Search results for: kinematic constraints
633 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions
Authors: Jincan Li, Mingyu Gao, Zhiwei He, Yuxiang Yang, Zhongfei Yu, Yuanyuan Liu
Abstract:
Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.
Keywords: 6-DOF robots, motion planning, trigonometric function, kinematic constraints
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923632 Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm
Authors: T.C. Manjunath
Abstract:
This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.
Keywords: Robot, Sensors, Kinematics, Computer, Control, PNP, LCD, Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4465631 Kinematic Analysis of an Assistive Robotic Leg for Hemiplegic and Hemiparetic Patients
Authors: M.R. Safizadeh, M. Hussein, K. F. Samat, M.S. Che Kob, M.S. Yaacob, M.Z. Md Zain
Abstract:
The aim of this paper is to present the kinematic analysis and mechanism design of an assistive robotic leg for hemiplegic and hemiparetic patients. In this work, the priority is to design and develop the lightweight, effective and single driver mechanism on the basis of experimental hip and knee angles- data for walking speed of 1 km/h. A mechanism of cam-follower with three links is suggested for this purpose. The kinematic analysis is carried out and analysed using commercialized MATLAB software based on the prototype-s links sizes and kinematic relationships. In order to verify the kinematic analysis of the prototype, kinematic analysis data are compared with the experimental data. A good agreement between them proves that the anthropomorphic design of the lower extremity exoskeleton follows the human walking gait.Keywords: Kinematic analysis, assistive robotic leg, lower extremity exoskeleton, cam-follower mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906630 Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms
Authors: J. Ramírez A., A. Rubiano F.
Abstract:
In this paper the direct kinematic model of a multiple applications three degrees of freedom industrial manipulator, was developed using the homogeneous transformation matrices and the Denavit - Hartenberg parameters, likewise the inverse kinematic model was developed using the same method, verifying that in the workload border the inverse kinematic presents considerable errors, therefore a genetic algorithm was implemented to optimize the model improving greatly the efficiency of the model.Keywords: Direct Kinematic, Genetic Algorithm, InverseKinematic, Optimization, Robot Manipulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332629 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530628 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton
Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan
Abstract:
This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4596627 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374626 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332625 Design and Analysis of Flexible Slider Crank Mechanism
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a pseudo-rigid-body model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite element analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.
Keywords: Kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5131624 Kinematic Parameters for Asa River Routing
Authors: A. O. Ogunlela, B. Adelodun
Abstract:
Flood routing is used in estimating the travel time and attenuation of flood waves as they move downstream a river or channel. The routing procedure is usually classified as hydrologic or hydraulic. Hydraulic methods utilize the equations of continuity and motion. Kinematic routing, a hydraulic technique was used in routing Asa River at Ilorin. The river is of agricultural and industrial importance to Ilorin, the capital of Kwara State, Nigeria. This paper determines the kinematic parameters of kinematic wave velocity, time step, time required to traverse, weighting factor and change in length. Values obtained were 4.67 m/s, 19 secs, 21 secs, 0.75 and 100 m, respectively. These parameters adequately reflect the watershed and flow characteristics essential for the routing. The synthetic unit hydrograph was developed using the Natural Resources Conservation Service (NRCS) method. 24-hr 10yr, 25yr, 50yr and 100yr storm hydrographs were developed from the unit hydrograph using convolution procedures and the outflow hydrographs were obtained for each of 24-hr 10yr, 25yr, 50yr and 100yr indicating 0.11 m3/s, 0.10 m3/s, 0.10 m3/s and 0.10 m3/s attenuations respectively.
Keywords: Asa River, Kinematic parameters, Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301623 Kinematic Optimal Design on a New Robotic Platform for Stair Climbing
Authors: Byung Hoon Seo, Hyun Gyu Kim, Tae Won Seo
Abstract:
Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.Keywords: Stair climbing robot, Optimal design, Taguchi methodology, Caterpillar, Kinematic parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299622 From Forbidden States to Linear Constraints
Authors: M. Zareiee, A. Dideban, P. Nazemzadeh
Abstract:
This paper deals with the problem of constructing constraints in non safe Petri Nets and then reducing the number of the constructed constraints. In a system, assigning some linear constraints to forbidden states is possible. Enforcing these constraints on the system prevents it from entering these states. But there is no a systematic method for assigning constraints to forbidden states in non safe Petri Nets. In this paper a useful method is proposed for constructing constraints in non safe Petri Nets. But when the number of these constraints is large enforcing them on the system may complicate the Petri Net model. So, another method is proposed for reducing the number of constructed constraints.Keywords: discrete event system, Supervisory control, Petri Net, Constraint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498621 Development of a GPS Buoy for Ocean Surface Monitoring: Initial Results
Authors: Anuar Mohd Salleh, Mohd Effendi Daud
Abstract:
This study presents a kinematic positioning approach that uses a global positioning system (GPS) buoy for precise ocean surface monitoring. The GPS buoy data from the two experiments are processed using an accurate, medium-range differential kinematic technique. In each case, the data from a nearby coastal site are collected at a high rate (1 Hz) for more than 24 hours, and measurements are conducted in neighboring tidal stations to verify the estimated sea surface heights. The GPS buoy kinematic coordinates are estimated using epoch-wise pre-elimination and a backward substitution algorithm. Test results show that centimeterlevel accuracy can be successfully achieved in determining sea surface height using the proposed technique. The centimeter-level agreement between the two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) current tidal gauge stations.
Keywords: Global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419620 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools
Authors: Yung-Yuan Hsu
Abstract:
The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122619 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries
Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness
Abstract:
The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.
Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158618 A Knee Modular Orthosis Design Based on Kinematic Considerations
Authors: C. Copilusi, C. Ploscaru
Abstract:
This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.Keywords: Human lower limb, children orthoses, kinematic analysis, knee orthosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604617 New Design Constraints of FIR Filter on Magnitude and Phase of Error Function
Authors: Raghvendra Kumar, Lillie Dewan
Abstract:
Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.
Keywords: Least square estimation, Constraints, Exchange algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653616 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932615 Performance Evaluation for Weightlifting Lifter by Barbell Trajectory
Authors: Ying-Chen Lin, Ching-Ting Hsu, Wei-Hua Ho
Abstract:
The purpose of this study is to investigate the kinematic characteristics and differences of the snatch barbell trajectory of 53 kg class female weight lifters. We take the 2014 Taiwan College Cup players as examples, and tend to make kinematic applications through the proven weightlifting barbell track system. The competition videos are taken by consumer camcorder with a tripod which set up at the side of the lifter. The results will be discussed in three parts, the first part is various lifting phase, the second part is the compare lifting between success and unsuccessful, and the third part is to compare the outstanding player with the general. Conclusion through the barbell can be used to observe the trajectories of our players lifting the usual process cannot be observed in the presence of malfunction or habits, so that the coach can find the problem and guide the players more accurately. Our system can be applied in practice and competition to increase the resilience of the lifter on the field.
Keywords: Computer aided sport training, Kinematic, Trajectory, Weightlifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232614 A Feasible Path Selection QoS Routing Algorithm with two Constraints in Packet Switched Networks
Authors: P.S.Prakash, S.Selvan
Abstract:
Over the past several years, there has been a considerable amount of research within the field of Quality of Service (QoS) support for distributed multimedia systems. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining a feasible path that satisfies a number of QoS constraints. The problem of finding a feasible path is NPComplete if number of constraints is more than two and cannot be exactly solved in polynomial time. We proposed Feasible Path Selection Algorithm (FPSA) that addresses issues with pertain to finding a feasible path subject to delay and cost constraints and it offers higher success rate in finding feasible paths.Keywords: feasible path, multiple constraints, path selection, QoS routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751613 Optimal SSSC Placement to ATC Enhancing in Power Systems
Authors: Sh. Javadi, A. Alijani, A.H. Mazinan
Abstract:
This paper reviews the optimization available transmission capability (ATC) of power systems using a device of FACTS named SSSC equipped with energy storage devices. So that, emplacement and improvement of parameters of SSSC will be illustrated. Thus, voltage magnitude constraints of network buses, line transient stability constraints and voltage breakdown constraints are considered. To help the calculations, a comprehensive program in DELPHI is provided, which is able to simulate and trace the parameters of SSSC has been installed on a specific line. Furthermore, the provided program is able to compute ATC, TTC and maximum value of their enhancement after using SSSC.Keywords: available transmission capability (ATC), total transmission capability (TTC), voltage constraints, stability constraints, FACTS, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038612 Perceived Constraints on Sport Participation among Young Koreans in Australia
Authors: Jae Won Kang
Abstract:
The purpose of this study was to examine a broader range of sport constraints perceived by young Koreans in Australia who may need to adjust to changing behavioral expectations due to the socio-cultural transitions. Regardless of gender, in terms of quantitative findings, the most important participation constraints within the seven categories were resources, access, interpersonal, affective, religious, socio-cultural, and physical in that order. The most important constraining items were a lack of time, access, information, adaptive skills, and parental and family support in that order. Qualitative research found young Korean’s participation constraints among three categories (time, parental control and interpersonal constraints). It is possible that different ethnic groups would be constrained by different factors; however, this is outside the scope of this study.
Keywords: Constraints, cultural adjustment, Sport, Young Koreans in Australia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628611 Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot
Authors: G. Shanmugasundar, R. Sivaramakrishnan, S. Venugopal
Abstract:
Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.
Keywords: Robot kinematics, screw jack mechanisms, Denavit-Hartenberg approach, universal joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914610 Reducing the Number of Constraints in Non Safe Petri Net
Authors: M. Zareiee, A. Dideban
Abstract:
This paper addresses the problem of forbidden states in non safe Petri Nets. In the system, for preventing it from entering the forbidden states, some linear constraints can be assigned to them. Then these constraints can be enforced on the system using control places. But when the number of constraints in the system is large, a large number of control places must be added to the model of system. This concept complicates the model of system. There are some methods for reducing the number of constraints in safe Petri Nets. But there is no a systematic method for non safe Petri Nets. In this paper we propose a method for reducing the number of constraints in non safe Petri Nets which is based on solving an integer linear programming problem.Keywords: discrete event system, Supervisory control, Petri Net, Constraint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314609 Fundamental Concepts of Theory of Constraints: An Emerging Philosophy
Authors: Ajay Gupta, Arvind Bhardwaj, Arun Kanda
Abstract:
Dr Eliyahu Goldratt has done the pioneering work in the development of Theory of Constraints. Since then, many more researchers around the globe are working to enhance this body of knowledge. In this paper, an attempt has been made to compile the salient features of this theory from the work done by Goldratt and other researchers. This paper will provide a good starting point to the potential researchers interested to work in Theory of Constraints. The paper will also help the practicing managers by clarifying their concepts on the theory and will facilitate its successful implementation in their working areas.Keywords: Drum-Buffer-Rope, Goldratt, ProductionScheduling, Theory of Constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525608 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007607 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model
Authors: Isa Ahmadi, Ramin Khamedi
Abstract:
In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.
Keywords: Cyclic Loading, Finite Element Analysis, Prager Kinematic Hardening Model, Torsion of shaft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740606 Identifying the Kinematic Parameters of Hexapod Machine Tool
Authors: M. M. Agheli, M. J. Nategh
Abstract:
Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367605 Effect of Particle Gravity on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation
Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski
Abstract:
In this study, the dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. The fractal dimension of the line is found in the case of different particle gravity (in practice, different values of particle drift velocity) in the presence of small particle inertia with a comparison with that obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle gravity affect the fractal dimension of the line for different particle gravity velocities in the range 0.2 < W < 2. With the increase of the particle drift velocity, the fractal dimension of the line decreases which may be explained as the particles pass many scales in their journey in the direction of the gravity and the particles trajectories do not affect by these scales at high particle drift velocities.Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438604 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation
Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski
Abstract:
The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262