
 

 

  
Abstract—This paper deals with the problem of constructing 

constraints in non safe Petri Nets and then reducing the number of the 
constructed constraints. In a system, assigning some linear constraints 
to forbidden states is possible. Enforcing these constraints on the 
system prevents it from entering these states. But there is no a 
systematic method for assigning constraints to forbidden states in non 
safe Petri Nets. In this paper a useful method is proposed for 
constructing constraints in non safe Petri Nets. But when the number 
of these constraints is large enforcing them on the system may 
complicate the Petri Net model. So, another method is proposed for 
reducing the number of constructed constraints. 
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Constraint 

I. INTRODUCTION 
UPERVISORY control theory which was presented by 
Ramadge and Wonham is a theory for the systematic 

control of discrete event systems [1], [2]. This theory is based 
on restricting the behavior of system for obtaining the 
objective function. This restriction can be accomplished by 
disabling controllable events in special situations [3]. For 
analyzing the systems by this theory, automata was used as the 
first tool for modeling of discrete event systems. But when the 
number of states in the system is large, modeling the systems 
by automata is difficult or maybe impossible [4]. So, Petri Net 
(PN) was proposed as an alternative tool for modeling these 
systems [5]. PNs are made of places and transitions and these 
are connected to each other by arcs. Compact structure and 
mathematical properties have made PNs as a useful tool for 
modeling discrete event systems.  

In a system, existence of some states which are called 
forbidden states is possible. So, the system must be avoided 
from entering these states. For this avoidance some methods 
are proposed. In [6], by putting some conditions on the 
controllable events, the system can be prevented from entering 
the forbidden states. These conditions lock the controllable 
transitions in special states. Another method for avoiding the 
forbidden states is adding some control places to the PN 
model of the system. In [7], a method is proposed for adding 
the control places by having the forbidden states. Another 
method for adding the control places is proposed in [8], which 
perform it by having linear constraints which are in the form 
of inequalities.  
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In [9] a method is proposed for assigning linear constraints 
to forbidden states. This method limits the sum of tokens in 
some places of PN. When these constraints are enforced on the 
system by the method in [8], the system is prevented from 
entering the forbidden states. But this method for assigning 
constraints to forbidden states is only applicable on safe PNs 
and there is no a systematic method for assigning constraints 
to forbidden states in non safe PNs. 

In this paper, for constructing linear constraints (also called 
constraint) related to forbidden states in non safe PNs, a very 
useful method will be proposed. At first, the constraints are 
constructed by the relation between the over-states of 
authorized states and sum of the marks in the places of PN 
when it is in a forbidden state. This way, like the presented 
method in [9] for safe PN, assigns an inequality to a forbidden 
state which in turn guaranties that the sum of marks of some 
places that are marked in a forbidden state is smaller than this 
sum when it is in that forbidden state. This constraint can be 
applicable if and only if it doesn’t forbid any authorized states. 
When this constraint forbids at least one of the authorized 
states it cannot be applied on the system. So this method must 
be changed to obtain the constraints which verify all the 
authorized states. For obtaining these constraints, some 
inequalities as an integer linear programming problem must be 
solved. These inequalities are the ones that each one verifies 
one of the authorized states and one of them is violated by the 
considered forbidden state. When there is at least one answer 
that verifies all these inequalities, this constraint can be 
constructed. By using this method, assigning constraints to 
forbidden states in many cases is possible.  

However, in a system which the number of constraints is 
large, by using the idea in [8] a large number of control places 
must be applied on the system. This concept leads to a 
complicated model of controlled system. But in [9] it is shown 
that it is possible to reduce the number of the constraints. In 
[10], a method is proposed that by using the invariant property 
reduces the number of constraints. In [11], another method for 
reduction the number of constraints is proposed that uses the 
concept of over-state. This simplification is done by the 
relation between the over-states of authorized states and 
forbidden states. Afterwards, some over-states are selected as 
the states which forbidding them leads to preventing system 
from entering the forbidden states. In [12] another method for 
reducing the number of constraints by using the relation 
between the set of authorized states and forbidden states and 
the concept of over-states is proposed. However, all of these 
methods are applicable on the safe PNs. 

In this paper the second objective is to show that a method 
which was proposed for reducing the number of constraints in 
safe PNs is applicable on non safe PNs, too. This method is 
based on the invariant property and is presented in [10]. In this 
paper this method is generalized for non safe PN and the 
capability of it for reducing the number of constraints is 
shown by an example. 
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This paper is organized as follows. In section 2, the important 
definitions and concepts which are required for introducing 
the new idea, are presented. In section 3, the new idea for 
assigning constraints to forbidden states in non safe PNs is 
presented. Afterwards, an example is introduced to illustrate 
the capability of this method. The method for reducing the 
number of constraints is introduced in section 4. This method 
was first proposed for safe PN but in this section it is 
generalized for non safe PN and the impact of this method will 
be applied on the example in section 3. Finally conclusion is 
discussed in section5. 

II.  PRELIMINARY PRESENTATION 
In this section the goal is to present some definitions and 

basic concepts that are important for introducing the new idea. 
Some definitions which were presented in [11] and [12) are 
necessary for this paper. So, we recall them here. 

A PN is represented by a quadruplet R={P,T,W,M0} where 
P is the set of places, T = { TC ∪TU } the set of controllable 
and uncontrollable transitions, W the incidence matrix and M0 
the initial marking. Places and transitions are connected 
together by arcs. The relation between places, transitions and 
arcs are shown by incidence matrix W [11].  

In an industrial system, the model of system can be divided 
into two sections. The first section is the model of process and 
the next is the model of specification. The process model of 
system is the model of components of system and the 
specification is the model of some conditions that must be 
verified by the system for obtaining the desired behavior. 

In a PN model of a system, all of the states which can be 
obtained by the model compose the set of reachable states and 
this set is shown by MR. In the set MR there may be some 
states that violate specifications or are deadlock states or the 
ones that the occurrence of uncontrollable events leads to 
these states. These states are called forbidden states [11]. So, 
the set MR can be divided to two subsets. The first one is the 
set of forbidden states and is shown by MF and the other one is 
the set of authorized states and is shown by MA. These two 
subsets don’t have any common component. 

In the set of forbidden states, there is a very important 
subset that is called the set of border forbidden states [13]. 
Forbidding these states leads to forbidding all the forbidden 
states. These states are defined as follows: 

Definition 1 [11]: Let MB be the set of border forbidden 
state: 

},|{ ijAjcFiB MMMandM →∈∃∑∈∃∈=
σ

σ MMM  

Where ∑c is the set of controllable transitions.                   
From definition 1, it is obvious that by disabling 

controllable events when the firings of them are leading to the 
border forbidden states, preventing system from reaching to 
the border forbidden states is possible and then the system 
cannot reach to any forbidden states. 

Remark 1. In this paper the number of marks in place Pi is 
shown by mi. 

                                                                                        

     Remark 2. In this paper each state in a PN is shown as 
1 2

1 2 ...i i inm m m
i i inP P P  where 1,...,i inP P  are the places which have marks 

and mik is the number of marks in place Pik. When mik=1, we 
only mention it by Pik.                                

For example suppose that in a PN there are 5 places as P1, P2, 
P3, P4, P5. Suppose that in a state, the places P1, P2, P3 are 
marked and the places P4, P5 are empty. Also suppose that in 
this state the numbers of tokens in the places P1, P2, P3 are 3, 
1, 4, respectively. In this case the state of this PN is shown 
as 3 4

1 2 3P P P . 

In a PN, there may be some properties for the markings that 
by changing the states of PN remain fixed. It means that when 
the state of system changes, they don’t change. These 
properties may be invariant or partial invariant. Invariant is a 
property that the sum of marks of some places in firing of each 
transition is constant. Partial invariant is a property that is 
resultant of invariant and is defined in definition 2.  

Definition 2 (Dideban et al., 2009). Let P′={P1,P2,…,Pr} be 
a place invariant in a PN R, Pi1={P1,P2,…,PL} for which 
{1,2,..L}⊂ {1,2,..r}, is a partial place invariant (also called 
partial invariant) and it satisfy the following inequality: 

q1m1+q2m2+…+qLmL≤k , ∀M ∈M(M0) 
where M(M0) is the set of all of states which are obtained by 
firing of transitions from M0. 

                                                                           
In the PN model of system there is an important concept 

that is called over-state [11]. Over-states play an important 
role for introducing the new idea. This concept is defined in 
definition 3.  

Remark 3. Suppose that M1 and M2 are two states. The 
relation M2 ≤ M1 means that all the marked places in M2 are 
marked in M1 and the number of marks of each place in M2 is 
smaller or equal than the number of marks of each equivalent 
place in M1.                                                                 
For example, the relation M2 ≤ M1, for the states 3 4 2

1 1 2 3M P P P=  
and 3 2

2 1 2M P P=  is true. 
Definition 3. Suppose that M1 is an accessible state. M2 will 

be an over-state of M1 if and only if: 
M2 ≤ M1 
                                                                                                               

For example, 1 2 3PP P  is an over-state of the state 2
1 2 3P P P . All of 

the over-states of 2
1 2 3P P P  are presented in the set Mo as 

follows: 
2 2 2 2

1 2 3 1 2 1 3 2 3 1 2 3 1 1 2 1 3 1 2 3{ , , , , , , , , , , }oM P P P PP PP P P PP P P P P P P P P P=  
In some conditions to prevent system from reaching to the 

forbidden states, it is possible to forbid their over-states. This 
concept will help us to reduce the number of constraints, [11] 
and [12]. 

In the next section, assigning constraints to the forbidden 
states in safe and non safe PNs will be discussed. Verifying 
these constraints by the system, leads to preventing system 
from reaching to the forbidden states. 

III. ASSIGNING CONSTRAINTS TO FORBIDDEN 
STATES 

As it is mentioned in section 2, in a system, there may be 
some states that are called forbidden stats. The system must be 
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avoided from reaching to these states. In [9], a method was 
proposed that by using it, assigning constraints to forbidden 
states is possible. These constraints are in the form of 
inequalities and by the idea presented in [8], the control places 
for applying them on the system can be calculated. But this 
idea is only applicable on safe Petri Net. In this section the 
goal is to construct constraints related to the forbidden states 
in non safe Petri Nets. So, at first, we remind the idea in [9]  
for constructing constraints in safe Petri Nets and after that, 
the new idea for constructing constraints in non safe Petri Nets 
will be proposed.  

1.1. Constructing constraints in safe PN 

In this subsection the method for constructing constraints 
related to forbidden states in safe Petri Nets is discussed. 
Suppose that in a safe Petri Net there is a forbidden state like 
P1P2P3. When the system is in this state, sum of the marks in 
the places P1, P2 and P3 is 3 (m1+m2+m3=3, where mi is the 
number of marks in the place Pi). One way to prevent system 
from reaching to this state is to consider a constraint that 
doesn’t permit sum of the marks of these places to be 3. This 
can be performed by an inequality like m1+m2+m3≤2. 
Verifying this inequality by the system, guaranties that the 
system cannot reach to this forbidden state. In [9], this concept 
is generalized for safe Petri Net and is described as follows: 

Suppose that in a safe PN, the state Pi1Pi2…Pin is a 
forbidden state. So, a linear constraint related to this state can 
be constructed as follows [9]: 

1
1

n

ik
k

m n
=

≤ −∑                                                                       (1) 

Where n is sum of marks of PN when the system is in that 
forbidden state (or the number of marked places) and mik is the 
number of marks in place Pik of forbidden state. 

When the constraints related to the forbidden states are 
verified by the system, the system cannot reach to the 
forbidden states. by using the idea in [8], control places can be 
applied on the system to verify these constraints. But this idea 
is only applicable on safe Petri Net. In the next subsection, the 
new idea will be proposed that by using it, in non safe Petri 
Net, constructing constraints related to forbidden states is 
possible. 

1.2. assigning constraints to forbidden states in non safe PN 

In section 3.1, we saw how to assign constraints to 
forbidden states in safe PN. But that method is not applicable 
for non safe PN. To show the deficiency of this method in non 
safe PNs, let us consider a simple example. Suppose that in a 
non safe PN there is a forbidden state like P1P2P3

2. When the 
system is in this state we have:  

m1+m2+m3=4 
Where mi is the number of marks in the place Pi. Applying 

(1) on this state leads to the inequality as follows: 
 m1+m2+m3≤3                                                               (2) 

But this inequality may forbid some authorized states. For 
example this inequality forbids the states P1

4, P2
4, P3

4, P1P2
3, 

P1
2P2

2, P1
3P2, P1P3

3, P1
2P3

2, P1
3P3, P2P3

3, P2
2P3

2, P2
3P3, 

P1
2P2P3, P1P2

2P3, P1P2P3
2 which some of them can be 

authorized states. So it is not correct to use the inequality (2) 
for preventing system from reaching to the forbidden state 
P1P2P3

2. As a result, it is not always possible to apply relation 

(1) on non safe PNs. But what happens if the inequality (2) 
doesn’t forbid any authorized state? In section 3.2.1, a method 
is introduced to construct constraints related to forbidden 
states. This method is generalization of the method that was 
presented for safe PN. 

1.2.1.   assigning constraints to forbidden states by 
generalization of the method in safe PN 

As it is obvious, the problem with applying the relation (1) 
on non safe PNs was the possibility of forbidding some 
authorized states by the constructed constraint. But it is 
possible that the constructed constraint by this method doesn’t 
forbid any authorized state. In this case, it is possible to apply 
this constraint on the system for preventing system from 
reaching to this forbidden state. This concept is generalized in 
property 1. 
     Property 1. Suppose that 1 2

1 2 ... nkk k
nP P P  is a forbidden state. If 

all the admissible states deduced from the set of places 
(P1,P2,…,Pn) that the sum of their markings is (k1+k2+…+kn), 
doesn’t exist in the set of over-states of authorized states, then, 
for preventing system from reaching to this state a constraint 
can be applied on the system as follows: 

m1+m2+…+mn ≤ k1+k2+…+kn -1                                                            (3) 
                                                                                            

Proof. For the proof of this property, it is necessary to show 
that this constraint forbids the considered forbidden state and 
doesn’t forbid any authorized states. 

It is clear that the considered forbidden state violates the 
constraint (3) since we have m1+m2+…+mn= k1+k2+…+kn that 
is not lower or equal to k1+k2+…+kn -1. Then by applying this 
constraint on the system, the considered forbidden state is not 
reachable.    

Now, it must be proved that this constraint is not violated 
by any authorized states. If it is not true, applying this 
inequality on the system must forbid at least one of the 
authorized states. It means that there is at least one over-state 
of authorized states that its places are in the set (P1,P2,…,Pn) 
and the sum of its marking is k1+k2+…+kn. But this is not true 
because this condition is evaluated in the hypothesis of 
property and if it is verified, we can use the constraint.  

                                        
For example suppose that the state P1P2P3

2 is a forbidden 
state. If the states P1

4, P2
4, P3

4, P1P2
3, P1

2P2
2, P1

3P2, P1P3
3, 

P1
2P3

2, P1
3P3, P2P3

3, P2
2P3

2, P2
3P3, P1

2P2P3, P1P2
2P3, P1P2P3P4 

are not in the set of over-states of authorized states, then, the 
inequality m1+m2+m3≤3 can be applied on the system for 
preventing system from reaching to this forbidden state. 

The advantage of this property is that in some conditions it 
is possible to assign constraints to forbidden states in non safe 
PN. Then these inequalities can be applied on the system by 
adding the control places.  

To explain this property, a simple example is introduced. 
Example 1. Suppose a system composed of two machines, 

one robot and a buffer between them. The start command of 
each machine is done by the controllable events c1 and c2 and 
the end of task of each machine is accomplished by the 
occurrence of uncontrollable events f1and f2. In this system the 
specification is that the second machine can do its work when 
the first machine completes its task twice. The synchronized 
model of this system is illustrated in fig.1. 
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Fig 1. PN model of the system in example 1 

The marking graph of this system is shown in fig. 2. 

 
Fig. 2. Marking graph of the system in example 1 

    In this figure, the uncertain states are shown by . These 
states are those which violate specification. For example, 
when the system is in the state 2

1 4 6PP P  firing of the transition f2 
violates the specification. Since machine 1 hasn’t completed 
its task. 

As it is obvious from the marking graph, the set of 
authorized states is: 

MA={P1P3P6
2, P2P3P6

2, P1P3P5P6, P2P3P5P6, P1P3P5
2, 

P1P4P5
2}. 

And the set of forbidden states which are also border 
forbidden states is as follows: 

MB={P1P4P6
2, P2P4P6

2, P2P4P5
2, P2P3P5

2, P2P4P5P6, 
P1P4P5P6}. 

So, to prevent system from reaching to these forbidden 
states, the constraints related to them must be extracted and 
then the control places corresponding to these constraints must 
be added to PN model of system. Now we must see if it is 
possible to assign inequalities to forbidden states by using the 
method proposed in property 1.  

Remark 4. In this paper we don’t write the set of over-states 
of authorized states since for applying property 1, the set of 
authorized states is enough. It means that the set of over-states 
of authorized states are recognized from the set of authorized 
states.  

                                                                                        
At first, we consider the set of forbidden states to construct 

constraints. For the forbidden state P1P4P6
2 we must check the 

set B1 as follows: 
B1={P1

4, P4
4, P6

4, P1P4
3, P1

2P4
2, P1

3P4, P1P6
3, P1

2P6
2, P1

3P6, 
P4P6

3, P4
2P6

2, P4
3P6}.  

The states in B1 don’t belong to the set of over-states of MA. 
So, according to property 1, a constraint can be assigned to the 
forbidden state P1P4P6

2 as follows: 
m1+m4+m6≤3                                                                     (4) 

Similar to this case, for the forbidden states P2P4P6
2, 

P2P4P5
2, P2P3P5

2 P2P4P5P6, the related constraints are 
constructed as follows: 

P2P4P6
2 → m2+m4+m6≤3                                                   (5) 

P2P4P5
2 → m2+m4+m5≤3                                                   (6) 

P2P3P5
2 → m2+m3+m5≤3                                                   (7) 

13 42
2

65426542
65 ≤+⎯⎯⎯ →⎯≤+++→ =+ mmmmmmPPPP mm   (8)  

For the forbidden state P1P4P5P6, the set B6 must be 
considered as follows: 

B6={P1
4, P4

4, P5
4, P6

4, P1P4
3, P1

2P4
2, P1

3P4
1, P1P5

3, P1
2P5

2, 
P1

3P5
1, P1P6

3, P1
2P6

2, P1
3P6

1, P4P5
3, P4

2P5
2, P4

3P5
1, P4P6

3, 
P4

2P6
2, P4

3P6
1, P5P6

3, P5
2P6

2, P5
3P6

1, P1P4P5
2, P1P4

2P5, 
P1

2P4P5, P1P4P6
2, P1P4

2P6, P1
2P4P6, P1P5P6

2, P1P5
2P6, P1

2P5P6, 
P4P5P6

2, P4P5
2P6, P4

2P5P6} 
As it is obvious from this set, the state P1P4P5

2 belongs to 
the set of over-states of authorized states (it is an authorized 
state). So it is not possible to assign a constraint to the 
forbidden state P1P4P5P6 by using the method presented in 
property 1. 

As it was obvious, by using the method in property 1 
assigning constraints was possible for 5 forbidden states, but 
for one of them it was impossible. So, to prevent system from 
reaching to the 5 forbidden states {P1P4P6

2, P2P4P6
2, P2P4P5

2, 
P2P3P5

2, P2P4P5P6}, five control places can be applied on the 
system. But by using the method in property 1, for the 6th 
forbidden state (P1P4P5P6), it’s not possible to assign a 
constraint. But how can we prevent the system from reaching 
to the 6th forbidden state (P1P4P5P6)? Is it possible to assign an 
inequality to it? In section 3.2.2, property 1 is developed and a 
general method for assigning constraint to forbidden states in 
non safe PN is proposed. 

3.2.2. Assigning constraints to forbidden states in a general 
way 

As mentioned before, when the constructed constraint by 
the method in property 1 forbids at least one of the authorized 
states, applying this property is impractical. This concept was 
seen in the case of 6th forbidden state (P1P4P5P6) in example 1. 
But how can we assign another inequality to this forbidden 
state? If this inequality exists, it must be the one that verifies 
all of the authorized states and prevent system from reaching 
to this forbidden state. For this reason we can consider a 
general inequality and check verifying all the authorized states 
and violating by the forbidden state. So, we can consider this 
inequality as follows: 

k1m1+k2m2+…+k6m6≤x                                                      (9) 
Where k1, k2, …, k6 and x are some constants and mi is the 

number of marks in place Pi. If this inequality verifies all the 
authorized states and is violated by the forbidden state 
(P1P4P5P6), it can be applied on the system for preventing 
system from reaching to this forbidden state. To verify the 
authorized states by the inequality (9), we can put them into 
this inequality as follows: 

P1P3P6
2 → k1+k3+2k6 ≤ x                                                 (10) 

P2P3P6
2 → k2+k3+2k6 ≤ x                                                 (11) 

P1P3P5P6
 → k1+k3+k5+k6 ≤ x                                           (12) 

P2P3P5P6
 → k2+k3+k5+k6 ≤ x                                           (13) 

P1P3P5
2 → k1+k3+2k5 ≤ x                                                 (14) 

P1P4P5
2 → k1+k4+2k5 ≤ x                                                 (15) 
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For Violating the inequality (9) by the forbidden state 
P1P4P5P6, we must put this state into the inequality (9) and 
convert the smaller equal sign to greater sign as follows: 

P1P4P5P6 → k1+k4+k5+k6 > x                                           (16) 
If there is a solution that verifies (10) to (16), at least one 

inequality like k1m1+k2m2+…+k6m6≤x can be obtained that 
verifies all the authorized states and prevent system from 
reaching to the forbidden state P1P4P5P6. So (10) to (16) must 
be solved. One answer for them is k1=0, k2=0, k3=0, k4=2, 
k5=0, k6=1, x=2. So, the inequality (9) will be as follows: 

2m4+m6≤2                                                                       (17) 
This inequality is a constraint that applying it on the system 

verifies all the authorized states and prevents system from 
reaching to the forbidden state P1P4P5P6. 

So, this concept can be generalized for constructing 
constraints for the forbidden states. Algorithm 1 shows this 
concept in a general way. 
     Algorithm 1. Let 111 12 1 2

11 12 1 1 2{ ... ,..., ... }rqt r r sss s s s
A t r r rqP P P P P P=M  be the 

set of authorized states and 1 2
1 2 ...v v vus s s

v v vuP P P  a forbidden state. 
Follow these steps to obtain a constraint related to this 
forbidden state: 

1- Consider an inequality as follows: 
k1m1+k2m2+…+knmn ≤ x                                    (18) 

Where n is the number of places and mi is the number 
of marks in place Pi and ki and x are constants. 

2- Put the markings of all the authorized states in the 
inequality (18) and construct inequalities as follows:  

111 12

1 2

11 12 1 11 11 12 12 1 1

1 2 1 1 2 2

... ... (1 19)
.
.
.

... ... ( 19)

t

rqr r

ss s
t t t

ss s
r r rq r r r r rq rq

P P P k s k s k s x

P P P k s k s k s x r

→ + + + ≤ −

→ + + + ≤ −

 
Where r is the number of authorized states. 

3- Put the marking of the forbidden state in the inequality 
(18) and convert the smaller equal sign to greater sign 
as follows: 

1 2
1 2 1 1 2 2... ...v v vus s s

v v vu v v v v vu vuP P P k s k s k s x→ + + + >               (20) 
4- Solve the set of relations (1-19) to (r-19) and (20) and 

obtain the minimum values for kis and x that verifies 
these relations. 

5- If step 4 has an answer, then put the kis and x in the 
inequality (18). The resultant inequality is a 
constraint for the forbidden state 1 2

1 2 ...v v vus s s
v v vuP P P .   

                                                                              
Remark 5. When the algorithm 1 has an answers, it can 

have many answers, so we can choose one of them with 
minimum of borne and weight (this concept is considered in 
step 4).  
                                                                                            

 It is clear that if the algorithm gives an answer, it verifies 
all the authorized states and forbid the considered forbidden 
state.                                                                                            

As it is obvious, the algorithm 1 gives a very efficient 
method for assigning constraints to forbidden states and then 
these constraints can be applied on the system by control 
places using the idea in [8].  

In example 1, there are six constraints that can be applied 
on the system by control places. But these constraints are so 
many and in [9], it is mentioned that they can be reduced. This 
reduction can be performed by the method presented for safe 
PN. These methods can be generalized for non safe PN. In the 
next section this concept will be discussed.  

 
IV. REDUCTION THE NUMBER OF CONSTRAINTS 
In the previous section, an example was presented that had 

6 forbidden states, so, 6 constraints were constructed for 
preventing system from reaching to them. In [9], it is shown 
that the number of constraints can be reduced. In [10-12], 
some methods are proposed that using them reducing the 
number of constraints in safe PN is possible. 

The idea in [10] uses the invariant and partial invariant for 
reducing the number of constraints. This method was proposed 
for safe and conservative PN. But it can be applied to non safe 
PN. In the following in property 2 and 3, this method is 
generalized for non safe PN. 

Property 2. Let be Ci={(m1+mi1+…+ mi(n-1)≤k), …, 
(mr+mi1+…+mi(n-1)≤k)} r constraints related to the forbidden 
states. If there is an invariant in the system as follows: 

m1+m2+…+mr=1 
Then the r constraints will be converted to one constraint as 

follows: 
mi1+…+mi(n-1)≤k-1 
Where n is the number of marked places and k is the borne 

of each constraint.                                                                                      
Proof. The proof of this property is like the one for safe PN 

in [10] and we recall it here. 
Necessary condition: 
The sum of all the constraints gives the constraint as follow: 
(m1+mi1+…+mi(n-1))+(m2+mi1+…+mi(n-1))+…+( 
m1+mi1+…+mi(n-1)) ≤ r(k-1) 

Since there is an invariant (m1+m2+…+mr = 1), this 
constraint is changed as follows: 

1+r(mi1+…+mi(n-1)) ≤ r(k-1)→ mi1+…+mi(n-1) ≤ k-1-1/r (mi 
is integer number)→ mi1+…+mi(n-1) ≤ n-2 

Sufficient condition: 
mi1+…+mi(n-1) ≤ n-2  

{1,…,r} mj = 0 or 1→ mj+ mi1+…+mi(n-1) ≤n-1 
                                                                           � 

Property 3. Let be Cp ={( m1+mi1+…+ mi(n-1)≤k), …, 
(mr+mi1+…+mi(n-1)≤k)} the equivalent constraints to forbidden 
states. If there is a partial invariant in the system as follows: 

m1+m2+…+mr ≤ 1 
Then these r constraints can be reduced to a constraint as 

follows: 
m1+m2+…mr+mi1+…+mi(n-1)≤k 
Where n is the number of marked places and k is the borne 

of constraints. 
                                                                                        
Proof. The proof of this property is like the one for safe PN 

in (Dideban & Alla, 2005), so we recall it as follow.  
Necessary condition: 

j {1,…, r}, mj+ mi1 +…+ mi(n-1) ≤ k and m1 + m2 +…+ mr ≤ 
1  (m1 + m2 + …+ mr)+mi1+…+mi(n-1) ≤ k+1 

We want to show that the limit k+1 is never reached. If not, 
it is necessary that m1 + m2 +…+ mr =1 and mi1+…+ mi(n-1) = 
k. But if mi1 +…+ mi(n-1) =k, it is necessary that for j {1,…, 
r}, mj = 0 since from the constraints we have mj+ mi1 +…+ 
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mi(n-1) ≤ k. then m1 + m2 +…+ mr=0. Thus limit k+1 never is 
reached. 
Sufficient condition: 
(m1+m2+…+mr)+mi1+…+mi(n-1)≤k   and   i {1,…,r}, mi≥ 0 

Then 
i  {1,…,r} mi + mi1+…+mi(n-1) ≤ k  

                                                                                                            
� 

Using these properties, reducing the number of constraints 
in non safe PN is reachable. Now we want to apply these 
properties on the constraints in example 1. 

The constraints in example 1 were as follow: 
m1+m4+m6≤3, m2+m4+m6≤3, m2+m4+m5≤3, m2+m3+m5≤3, 

m2+m4≤1, 2m4+m6≤2. 
In this model there is an invariant as m1+m2=1. So 

according to the property 2, it is possible to reduce the two 
constraints m1+m4+m6≤3 and m2+m4+m6≤3 to one constraint as 
follows: 

m4+m6≤2                                                                         (21) 
But the inequality (17) covers the inequality (21). So, it is 

possible to apply (17) instead of (21). Thus, (17) is a 
constraint for the forbidden states P1P4P6

2, P2P4P6
2 and 

P1P4P5P6. 
Also, in this example there is an invariant as m3+m4=1. So, 

according to the property 2, the constraints m2+m4+m5≤3 and 
m2+m3+m5≤3 can be converted to one constraint as follows: 

m2+m5 ≤ 2                                                                        (22) 
Also the inequalities (17) and (22) cover the inequality (8) 

since m2≤1, m4≤1 and m5+m6=2. So, 6 constraints are reduced 
to two constraints as follows: 

 2m4+m6≤2      ,      m2+m5 ≤ 2                                         (23) 
Applying these two constraints on the system prevents 

system from reaching to all the forbidden states. These two 
constraints can be applied on the system by the method 
presented in [8]. 

Calculation of control places for applying constraints on the 
system 

After reducing the number of constraints in example 1, the 
final constraints must be applied on the system. For this reason 
the control places according to the idea in [8] must be 
calculated. In the following, we review this method. 

To calculate control places, suppose that the set of 
constraints is shown as follows: 
L.MP≤b                                                                            (24)                     

Where MP is the marking vector, L is a nc ×n matrix, b is a 
nc×1 vector, nc is the number of constraints and n is the 
number of places. In this method instead of each constraint, a 
control place is added to the system. These control places are 
calculated by converting inequalities in (24) to equalities. So, 
when the control places are added to the system, its incidence 
matrix changes and instead of each constraint (control place), 
a row is added to this incidence matrix. Now, suppose that the 
incidence matrix of system before applying control places is 
shown by WP. Also suppose that the rows that must be added 
to this matrix are shown by Wc, so this matrix is calculated as 
follows: 

Wc= -L.WP                                                                                                      (25) 
This matrix must be added to the system, and the incidence 

matrix for controlled model is obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=

c

p

W

W
W

                                                                  (26) 
After this calculation, the initial marking of these control 

places must be calculated. For this reason suppose that the 
initial marking of system is shown by MP0, then the initial 
markings of the control places are calculated as follows: 

Ms0=b-L.MP0                                                                                                        (27) 
So the initial marking of controlled model is as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=

0

0
0

s

p

M

M
M                                                                (28) 

Now, we must calculate the control places for the 
constraints in example 1. The two constraints for this example 
were: 

2m4+m6≤2      ,      m2+m5 ≤ 2 
So, for this example we have: 

0 0 0 2 0 1
0 1 0 0 1 0

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦              and               

2
2

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

So, Wc is calculated as follows: 
0 2 1 0

1 0 0 2cW
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦  
And the initial marking of the control places is as follows: 

0

0
2sM

⎡ ⎤
= ⎢ ⎥

⎣ ⎦  
Following this calculation, the controlled model of this 

example is illustrated in Fig 3. 

 
Fig. 3. The controlled model of the system in example 1 

The control places and their related arcs are shown in gray 
color and dashed lines. 

V.  CONCLUSION 
In this paper, the problem of assigning constraints to 

forbidden states in non safe Petri net is considered. So a 
systematic method is proposed to assign a linear constraint to 
a forbidden state. This constraint can be constructed by having 
authorized states and the considered forbidden state. At first 
the method which was presented for safe PN is generalized for 
non safe PN. But the constructed constraint by this method 
may forbid some authorized states. To solve this problem, a 
basic constraint is considered. From this constraint, some 
inequalities are extracted. These inequalities are the ones 
which one of them is deduced from the violation of basic 
constraint by the considered forbidden state and the others are 
deduced from verifying the basic constraint by the authorized 
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states. So, these inequalities must be solved to obtain an 
inequality which verifies all of them. But when the number of 
these constraints is large, simplification of constraints for 
reducing the number of them must be performed. In this paper, 
this simplification is accomplished by generalization of the 
method which was presented for safe Petri net and uses the 
invariant and partial invariant property.  
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