**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30169

##### Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

**Authors:**
Tomoaki Hashimoto

**Abstract:**

**Keywords:**
Optimal control,
stochastic systems,
discrete-time
systems,
probabilistic constraints.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1108827

**References:**

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained Model Predictive Control: Stability and Optimality, Automatica, Vol. 36, 2000, pp.789-814.

[2] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Thermal Fluid Systems, Proceedings of SICE Annual Conference, 2012, pp.1298-1303.

[3] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Spatiotemporal Dynamic Systems, Proceedings of IEEE Conference on Decision and Control, 2013, pp.2920-2925.

[4] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control for Hot Strip Mill Cooling Systems, IEEE/ASME Transactions on Mechatronics, vol. 18, 2013, pp. 998-1005.

[5] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control With Numerical Solution for Nonlinear Parabolic Partial Differential Equations, IEEE Transactions on Automatic Control, Vol. 58, 2013, pp. 725-730.

[6] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control for High-Dimensional Burgers ’ Equations with Boundary Control Inputs, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 56, 2013, pp. 137-144.

[7] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding Horizon Control for Spatiotemporal Dynamic Systems, Proceedings of Asian Control Conference, 2013.

[8] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for Mass Transport Phenomena in Thermal Fluid Systems, Proceedings of Australian Control Conference, 2014, pp.273-278.

[9] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time Nonlinear Implicit Systems, Proceedings of IEEE Conference on Decision and Control, 2014, pp.5089-5094.

[10] M. V. Kothare, V. Balakrishnan and M. Morari, Robust Constrained Model Predictive Control Using Linear Matrix Inequalities, Automatica, Vol. 32, 1996, pp.1361-1379.

[11] P. Scokaert and D. Mayne, Min-max Feedback Model Predictive Control for Constrained Linear Systems, IEEE Trans. Automat. Contr., Vol. 43, 1998, pp.1136-1142.

[12] A. Bemporad, F. Borrelli and M. Morari, Min-max Control of Constrained Uncertain Discrete-time Linear Systems, IEEE Trans. Automat. Contr., Vol. 48, 2003, pp.1600-1606.

[13] T. Alamo, D. Pe˜na, D. Limon and E. Camacho, Constrained Min-max Predictive Control: Modifications of the Objective Function Leading to Polynomial Complexity, IEEE Trans. Automat. Contr., Vol. 50, 2005, pp.710-714.

[14] D. Pe˜na, T. Alamo, A. Bemporad and E. Camacho, A Decomposition Algorithm for Feedback Min-max Model Predictive Control, IEEE Trans. Automat. Contr., Vol. 51, 2006, pp.1688-1692.

[15] D. Bertsimas and D. B. Brown, Constrained Stochastic LQC: A Tractable Approach, IEEE Trans. Automat. Contr., Vol. 52, 2007, pp.1826-1841.

[16] P. Hokayema, E. Cinquemani, D. Chatterjee, F Ramponid and J. Lygeros, Stochastic Receding Horizon Control with Output Feedback and Bounded Controls, Automatica, Vol. 48, 2012, pp.77-88.

[17] M. Cannon, B. Kouvaritakis and D. Ng, Probabilistic Tubes in Linear Stochastic Model Predictive Control, Systems & Control Letters, Vol. 58, 2009, pp.747-753.

[18] M. Cannon, B. Kouvaritakis and X. Wu, Model Predictive Control for Systems with Stochastic Multiplicative Uncertainty and Probabilistic Constraints, Automatica, Vol. 45, 2009, pp.167-172.

[19] M. Cannon, B. Kouvaritakis and X. Wu, Probabilistic Constrained MPC for Multiplicative and Additive Stochastic Uncertainty, IEEE Trans. Automat. Contr., Vol. 54, 2009, pp.1626-1632.

[20] E. Cinquemani, M. Agarwal, D. Chatterjee and J. Lygeros, Convexity and Convex Approximations of Discrete-time Stochastic Control Problems with Constraints, Automatica, Vol. 47, 2011, pp.2082-2087.

[21] M. Ono, L. Blackmore and B. C. Williams, Chance Constrained Finite Horizon Optimal Control with Nonconvex Constraints, Proceedings of American Control Conference, 2010, pp.1145-1152.

[22] G. C. Calafiore and M. C. Campi, The Scenario Approach to Robust Control Design, IEEE Trans. Automat. Contr., Vol. 51, 2006, pp.742-753.

[23] J. Matuˇsko and F. Borrelli, Scenario-Based Approach to Stochastic Linear Predictive Control, Proceedings of the 51st IEEE Conference on Decision and Control, 2012, pp.5194-5199.

[24] A. Nemirovski and A. Shapiro, Convex Approximations of Chance Constrained Programs, SIAM J. Control Optim., Vol. 17, 2006, pp.969-996.

[25] Z. Zhou and R. Cogill, An Algorithm for State Constrained Stochastic Linear-Quadratic Control, Proceedings of American Control Conference, 2011, pp.1476-1481.

[26] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained Model Predictive Control for Schr¨odinger Equation with Finite Approximation, Proceedings of SICE Annual Conference, 2012, pp.1613-1618.

[27] T. Hashimoto, Probabilistic Constrained Model Predictive Control for Linear Discrete-time Systems with Additive Stochastic Disturbances, Proceedings of IEEE Conference on Decision and Control, 2013, pp.6434-6439.

[28] T. Hashimoto, Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2015, pp.1385-1390.

[29] M. Farina, L. Giulioni, L. Magni and R. Scattolini, A Probabilistic Approach to Model Predictive Control, Proceedings of the 52nd IEEE Conference on Decision and Control, 2013, pp.7734-7739.

[30] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 6th edition, 2010.

[31] S. Boucheron, G. Lugosi and P. Massart Concentration Inequalities: A Nonasymptotic Thepry of Independence, Oxford University Press, 2013.

[32] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operation Research and Financial Engineering, Springer, 2006.