Search results for: dilute acid
772 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs
Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3434771 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production
Authors: U. A. Asli, H. Hamid, Z.A. Zakaria, A. N. Sadikin, R. Rasit
Abstract:
This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.
Keywords: Bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747770 Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Wood Biomass
Authors: M. Ungurean, F. Fitigau, C. Paul, A. Ursoiu, F. Peter
Abstract:
Pretreatment of lignocellulosic biomass materials from poplar, acacia, oak, and fir with different ionic liquids (ILs) containing 1-alkyl-3-methyl-imidazolium cations and various anions has been carried out. The dissolved cellulose from biomass was precipitated by adding anti-solvents into the solution and vigorous stirring. Commercial cellulases Celluclast 1.5L and Accelerase 1000 have been used for hydrolysis of untreated and pretreated lignocellulosic biomass. Among the tested ILs, [Emim]COOCH3 showed the best efficiency, resulting in highest amount of liberated reducing sugars. Pretreatment of lignocellulosic biomass using glycerol-ionic liquids combined pretreatment and dilute acid-ionic liquids combined pretreatment were evaluated and compared with glycerol pretreatment, ionic liquids pretreatment and dilute acid pretreatment.Keywords: Cellulase, enzymatic hydrolysis, lignocellulosicbiomass, pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2873769 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs
Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734768 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology
Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn
Abstract:
Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.
Keywords: Lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401767 Enhancing Efficiency for Reducing Sugar from Cassava Bagasse by Pretreatment
Authors: S. Gaewchingduang, P. Pengthemkeerati
Abstract:
Cassava bagasse is one of major biomass wastes in Thailand from starch processing industry, which contains high starch content of about 60%. The object of this study was to investigate the optimal condition for hydrothermally pretreating cassava baggasses with or without acid addition. The pretreated samples were measured reducing sugar yield directly or after enzymatic hydrolysis (alpha-amylase). In enzymatic hydrolysis, the highest reducing sugar content was obtained under hydrothermal conditions for at 125oC for 30 min. The result shows that pretreating cassava baggasses increased the efficiency of enzymatic hydrolysis. For acid hydrolysis, pretreating cassava baggasses with sulfuric acid at 120oC for 60 min gave a maximum reducing sugar yield. In this study, sulfuric acid had a greater capacity for hydrolyzing cassava baggasses than phosphoric acid. In comparison, dilute acid hydrolysis to provide a higher yield of reducing sugar than the enzymatic hydrolysis combined hydrothermal pretreatment. However, enzymatic hydrolysis in a combination with hydrothermal pretreatment was an alternative to enhance efficiency reducing sugar production from cassava bagasse.
Keywords: Acid hydrolysis, cassava bagasse, enzymatic hydrolysis, hydrothermal pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979766 Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse
Authors: Glauber Cruz, Patrícia A. S. Monteiro, Carlos E. M. Braz, Paulo Seleghin Jr., Igor Polikarpov, Paula M.Crnkovic
Abstract:
Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.
Keywords: Alkaline solutions, bioethanol production, dilute acid, enzymatic hydrolysis, lignocellulosic biomass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552765 Biodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460
Authors: A. Manivannan, R. T. Narendhirakannan
Abstract:
The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 was comparable to predicted value 32.05g/L obtained by Central Composite Design (CCD). Maximum ethanol yield coefficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. Although maximum ethanol concentration was low in lab scale, the improvement of lignocellulosic ethanol yield is necessary for large scale production.
Keywords: Acid hydrolysis, Biodegradation, Hemicellulose, Pachysolen tannophilus, Water hyacinth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892764 Optimization of Two-Stage Pretreatment Combined with Microwave Radiation Using Response Surface Methodology
Authors: Jidapa Manaso, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
Pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugar that used for biobutanol production. Among pretreatment processes, microwave is considered to improve pretreatment efficiency due to its high heating efficiency, easy operation, and easily to combine with chemical reaction. The main objectives of this work are to investigate the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of corncobs and to determine the optimal conditions using response surface methodology. Corncobs were pretreated via two-stage pretreatment in dilute sodium hydroxide (2 %) followed by dilute sulfuric acid 1 %. Pretreated corncobs were subjected to enzymatic hydrolysis to produce reducing sugar. Statistical experimental design was used to optimize pretreatment parameters including temperature, residence time and solid-to-liquid ratio to achieve the highest amount of glucose. The results revealed that solid-to-liquid ratio and temperature had a significant effect on the amount of glucose.Keywords: Corncobs, Microwave radiation, Pretreatment, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554763 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum
Authors: A. Magesh, B. Preetha, T. Viruthagiri
Abstract:
Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640762 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979761 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034760 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production
Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario
Abstract:
The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3891759 Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku
Authors: Semuel Unwakoly, Reinner Puppela, Maresthy Rumalean, Healthy Kainama
Abstract:
Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (M. maculata) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (M. maculata) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid.
Keywords: Moonfish (M. maculata), fatty acid, amino acid, GC-MS, HPLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909758 Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography
Authors: Elham Moniri, Homayon Ahmad Panahi, Ahmad Izadi, Mohamad Mehdi Parvin, Atyeh Rahimi
Abstract:
In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.Keywords: Thin layer chromatography (TLC), Aspirin, Salicylic acid, Sulfosalycylic acid, Boric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327757 High Performance Liquid Chromatography Determination of Urinary Hippuric Acid and Benzoic Acid as Indices for Glue Sniffer Urine
Authors: Abdul Rahim Yacob, Mohamad Raizul Zinalibdin
Abstract:
A simple method for the simultaneous determination of hippuric acid and benzoic acid in urine using reversed-phase high performance liquid chromatography was described. Chromatography was performed on a Nova-Pak C18 (3.9 x 150 mm) column with a mobile phase of mixed solution methanol: water: acetic acid (20:80:0.2) and UV detection at 254 nm. The calibration curve was linear within concentration range at 0.125 to 6.0 mg/ml of hippuric acid and benzoic acid. The recovery, accuracy and coefficient variance of hippuric acid were 104.54%, 0.2% and 0.2% respectively and for benzoic acid were 98.48%, 1.25% and 0.60% respectively. The detection limit of this method was 0.01ng/l for hippuric acid and 0.06ng/l for benzoic acid. This method has been applied to the analysis of urine samples from the suspected of toluene abuser or glue sniffer among secondary school students at Johor Bahru.Keywords: Glue sniffer, High Performance LiquidChromatography, Hippuric Acid, Toluene, Urine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372756 Mathematical Simulation of Acid Concentration Effects during Acid Nitric Leaching of Cobalt from a Mixed Cobalt-Copper Oxide
Authors: Ek Ngoy, A F Mulaba-Bafubiandi
Abstract:
Cobalt was acid nitric leached from a mixed cobaltcopper oxide with variable acid concentration. Resulting experimental data were used to analyze effects of increase in acid concentration, based on a shrinking core model of the process. The mathematical simulation demonstrated that the time rate of the dissolution mechanism is an increasing function of acid concentration. It was also shown that the magnitude of the acid concentration effect is time dependent and the increase in acid concentration is more effective at earlier stage of the dissolution than at later stage. The remaining process parameters are comprehensively affected by acid concentration and their interaction is synergetic.Keywords: Acid effect, Cobalt, Cobalt-copper oxide, Leaching, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845755 Evaluation of SSR Markers Associated with High Oleic Acid in Sunflower
Authors: Atitaya Singchai, Nooduan Muangsan, Thitiporn Machikowa
Abstract:
Sunflower oil with high oleic acid content is most desirable because of its high oxidative stability. Screening sunflower of high oleic acid using conventional method is laborious and time consuming. Therefore, the use of molecular markers as a screening tool is promising. The objective of this research was to evaluate SSR primers for high oleic acid content in sunflower. Two sunflower lines, 5A and PI 649855 were used as the representative of low and high oleic acid sunflowers, respectively, and thirty seven SSR markers were used to identify oleic acid content trait. The results revealing 10 SSR primers showed polymorphic between high and low oleic acid lines and thus were informative. With these primers, therefore, it is possible to identify the genetic markers associated with high oleic acid trait in sunflower genotypes.
Keywords: Microsatellite, Helianthus annuus L., fatty acid composition, molecular markers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582754 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production
Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya
Abstract:
Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.
Keywords: Microalgal biomass, enzymatic saccharification, biobutanol, fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897753 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation
Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying
Abstract:
Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.
Keywords: Acetic acid, hydrogenation, PtSn, operating condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245752 Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp
Authors: Woranart Jonglertjunya, Nattawadee Pranrawang, Nuanyai Phookongka, Thanasak Sridangtip, Watthana Sawedrungreang, Chularat Krongtaew
Abstract:
Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).
Keywords: sugarcane bagasses, acid hydrolysis, lactic acid, fermentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517751 Hydrolytic Properties of Ellagic Acid in Commercial Pomegranate Juices
Authors: Sibel Uzuner, Jale Acar
Abstract:
Pomegranate and pomegranate juices (PJs) have taken great attention for their health benefits in the last years. As there is an increasing concern about potential health benefits of ellagic acid, it is of great interest to evaluate alterations in ellagic acid concentration of commercial PJs. The purpose of this study is to analyze total phenolic, free and total ellagic acid content of six commercial PJs sold in Turkish markets using HPLC. The results showed that some commercial PJs had markedly high total phenolic and ellagic acid content. Total phenolic substances of commercial PJs range from 796.71 to 4608.91 mg GAE/l. Free amount of ellagic acid in commercial PJs range from 27.64 to 111.78 mg/l. Samples are hydrolyzed with concentrated HCl at 93oC for 2 and 24 hour and influences of temperature and time parameters on hydrolization were investigated. Thermal processing for pasteurization increased ellagic acid via ellagitannins hydrolysis.Keywords: Ellagic acid, ellagitannin, pomegranate juice, total phenolic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212750 Inhibitory Effect of Lactic Acid and Nisin on Bacterial Spoilage of Chilled Shrimp
Authors: A. R. Shirazinejad, I. Noryati, A. Rosma, I. Darah
Abstract:
Lactic acid alone and its combined application with nisin were evaluated for reducing population of naturally occurring microorganisms on chilled shrimp. Fresh shrimps were dipped in 0, 1.0% and 2.0% (v/v) lactic acid alone and their combined application with 0.04 (g/L/kg) nisin solution for 10 min. Total plate counts of aerobic bacteria (TPCs), Psychrotrophic counts, population of Pseudomonas spp., H2S producing bacteria and Lactic acid bacteria (LAB) on shrimps were determined during storage at 4 °C. The results indicated that total plate counts were 2.91 and 2.63 log CFU/g higher on untreated shrimps after 7 and 14 days of storage, respectively, than on shrimps treated with 2.0% lactic acid combined with 0.04 (g/L/kg) nisin. Both concentrations of lactic acid indicated significant reduction on Pseudomonas counts during storage, while 2.0% lactic acid combined with nisin indicated the highest reduction. In addition, H2S producing bacteria were more sensitive to high concentration of lactic acid combined with nisin during storage.Keywords: Shrimp, lactic acid, nisin, spoilage bacteria
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462749 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution [(γ)_i^∞] for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.
Keywords: Ionic liquid, Neural networks, VLE, Dilute solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366748 Analysis of the Supramolecular Complex of Kinetin with Glycyrrhizic Acid Using the Chromatography Mass Spectrometry Method
Authors: B. Y. Matmuratov, S. D. Madrakhimova. R. S. Esanov. A. D. Matchanov
Abstract:
Supramolecular complexes of glycyrrhizic acid with kinetin in various molar ratios were obtained, physico-chemical parameters and spectral properties of the resulting complexes were studied (UV, IR, mass spectrometry.
Keywords: Monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355747 Solid-State Bioconversion of Pineapple Residues into Kojic Acid by Aspergillus flavus: A Prospective Study
Authors: S. Nurashikin, E. Z. Rusley, A. Husaini
Abstract:
Kojic acid is an organic acid that is widely used as an ingredient for dermatological products, precursor for flavor enhancer and also as anti-inflammatory drug. The present study was undertaken to test the feasibility of pineapple residues as substrate for kojic acid production by Aspergillus flavus Link 44-1 via solid-state fermentation. The effect of initial moisture content, pH and incubation time on kojic acid fermentation was investigated. The best initial moisture content for kojic acid production from pineapple residues was observed at 70% (v/w) whereas initial culture pH 2.5 was identified to give high production of kojic acid. The optimal range of incubation time was identified between 8 and 14 days of incubation which corresponded to highest range of kojic acid produced. The results from this study pronounce the promising usability of pineapple residues as alternative substrate for kojic acid production by A. flavus Link 44-1.
Keywords: Aspergillus flavus, kojic acid, pineapple residues, solid state fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689746 Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus
Authors: Ming-Lun Chiang, Chieh Wu, Ming-Ju Chen
Abstract:
Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.
Keywords: Vibrio parahaemolyticus, acid adaptation, thermostable direct hemolysin, fatty acid profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118745 Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study
Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
Ionic liquids consisting of a phosphonium cationic moiety and a saccharinate anion are synthesized and compared with their precursors, phosphonium chlorides, in reference to their extraction efficiency towards L-lactic acid. On the base of measurements of the acid and the water partitioning in the equilibrium biphasic systems, the molar ratios between acid, water and ionic liquid are estimated which allows to deduce the lactic acid extractive pathway. The effect of a salting-out addition that strengthens hydrophobicity in both phases is studied in view to reveal the best biphasic system with respect to IL low toxicity and high extraction efficiency.
Keywords: Biphasic system, Extraction, Ionic liquids, Lactic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716744 Growth Effects of Caffeic Acid and Thioglycolic Acid Modified Chitosans in U937 Cells
Authors: Aytekin A.O., Morimura S.
Abstract:
Chitosan is a biopolymer composed of glucosamine and N-acetyl glucosamine. Solubility and viscosity pose problems in some applications. These problems can be overcome with unique modifications. In this study, firstly, chitosan was modified by caffeic acid and thioglycolic acid, separately. Then, growing effects of these modified polymers was observed in U937 cell line. Caffeic acid is a phenolic compound and its modifications act carcinogenic inhibitors in drugs. Thiolated chitosans are commonly being used for drugdelivery systems in various routes, because of enhancing mucoadhesiveness property. U937 cell line was used model cell for leukaemia. Modifications were achieved by 1 – 15 % binding range. Increasing binding ratios showed higher radical-scavenging activity and reducing cell growth, in compared to native chitosan. Caffeic acid modifications showed higher radical-scavenging activity than thiolated chitosans at the same concentrations. Caffeic acid and thioglycolic acid modifications inhibited growth of U937, effectively.Keywords: Chitosan, U937 cell, caffeic acid, thioglycolic acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870743 Effect of Acid Adaptation on the Survival of Three Vibrio parahaemolyticus Strains under Simulated Gastric Condition and their Protein Expression Profiles
Authors: Ming-Lun Chiang, Hsi-Chia Chen, Chieh Wu, Yu-Ting Tseng, Ming-Ju Chen
Abstract:
In this study, three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) were subjected to acid adaptation at pH 5.5 for 90 min. The survival of acid-adapted and non-adapted V. parahaemolyticus strains under simulated gastric condition and their protein expression profiles were investigated. Results showed that acid adaptation increased the survival of the test V. parahaemolyticus strains after exposure to simulated gastric juice (pH 3). Additionally, acid adaptation also affected the protein expression in these V. parahaemolyticus strains. Nine proteins, identified as atpA, atpB, DnaK, GroEL, OmpU, enolase, fructose-bisphosphate aldolase, phosphoglycerate kinase and triosephosphate isomerase, were induced by acid adaptation in two or three of the test strains. These acid-adaptive proteins may play important regulatory roles in the acid tolerance response (ATR) of V. parahaemolyticus.Keywords: Acid adaptation, protein expression, simulated gastric juice, Vibrio parahaemolyticus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588