Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study

Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov

Abstract:

Ionic liquids consisting of a phosphonium cationic moiety and a saccharinate anion are synthesized and compared with their precursors, phosphonium chlorides, in reference to their extraction efficiency towards L-lactic acid. On the base of measurements of the acid and the water partitioning in the equilibrium biphasic systems, the molar ratios between acid, water and ionic liquid are estimated which allows to deduce the lactic acid extractive pathway. The effect of a salting-out addition that strengthens hydrophobicity in both phases is studied in view to reveal the best biphasic system with respect to IL low toxicity and high extraction efficiency.

Keywords: Biphasic system, Extraction, Ionic liquids, Lactic acid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100284

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719

References:


[1] H. G. Joglekar, I. Rahman, S. Babu, B. D. Kulkarni, and A. Joshi, “Comparative assessment of downstream processing options for lactic acid,” Sep. Purif. Technol., vol. 52, pp. 1-17, 2006.
[2] J. A. Tamada and C. Judson King, “Extraction of carboxylic acids with amine extractants. 2. Chemical interactions and interpretation of data,” Ind. Eng. Chem. Res., vol. 29, pp. 1327-1333, 1990.
[3] D. H. Han and W. H. Hong, “Water-enhanced solubilities of lactic acid in reactive extraction using trioctylamine/various active diluents systems,” Sep. Sci. Technol., vol. 33, pp. 271-281, 1998.
[4] K. L. Wasewar, V. G. Pangarkar, A. B. M. Heesink, and G. F. Versteeg, “Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction,” Chem. Eng. Sci., vol. 58, pp. 3385-3393, 2003.
[5] D. Yankov, J. Molinier, G. Kyuchoukov, J. Albet, and G. Malmary, “Improvement of the lactic acid extraction from aqueous solutions and simulated fermentation broth by means of mixed extractant and TOA, partially loaded with HCl, Chem. Biochem. Eng. Quart., vol. 19, pp. 17- 24, 2005.
[6] G. Kyuchoukov, A. Labbaci, J. Albet, and J. Molinier, “Simultaneous influence of active and “inert” diluents on the extraction of lactic acid by means of tri-n-octylamine (TOA) and tri-iso-octylamine (TIOA),” Ind. Eng. Chem. Res., vol. 45, pp. 503-510, 2006.
[7] A. Krzyżaniak, B. Schuur, M. Sukumaran, H. Zuilhof, and A. B. de Haan, “Extractant screening for liquid-liquid extraction in environmentally benign production routes,” Chem. Eng. Trans., vol. 24, pp. 709-714, 2011.
[8] A. Krzyżaniak, M. Leeman, F. Vossebeld, T. J. Visser, B. Schuur, and A. B. de Haan, “Novel extractants for the recovery of fermentation derived lactic acid,” Sep. Purif. Technol., vol. 111, pp. 82-89, 2013.
[9] K. L. Wasewar, A. A. Yawalkar, J. A. Moulijn, and V. G. Pangarkar, “Fermentation of glucose to lactic acid coupled with reactive extraction: a review,” Ind. Eng. Chem. Res., vol. 43, pp. 5969-5982, 2004.
[10] S. Mallakpour and M. Dinari, “Ionic liquids as green solvents: progress and prospects,” in Green solvents II: Properties and applications of ionic liquids, A. Mohammad and Inamuddin, Eds. Dordrecht: Springer Science+Business Media, 2012, pp. 1-32.
[11] M. Matsumoto, K. Mochiduki, K. Fukunishi, and K. Kondo, “Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus,” Sep. Purif. Technol., vol. 40, pp. 97-101, 2004.
[12] J. Marták and Š. Schlosser, “Extraction of lactic acid by phosphonium ionic liquids,” Sep. Purif. Technol., vol. 57, pp. 483-494, 2007.
[13] F. S. Oliveira, J. M. M. Araújo, R. Ferreira, L. P. N. Rebelo, and I. M. Marrucho, “Extraction of L-lactic, L-malic, and succinic acids using phosphonium-based ionic liquids,” Sep. Purif. Technol., vol. 85, pp. 137-146, 2012.
[14] K. Tonova, I. Svinyarov, and M. G. Bogdanov, “Hydrophobic 3-alkyl-1- methylimidazolium saccharinates as extractants for L-lactic acid recovery,” Sep. Purif. Technol., vol. 125, pp. 239-246, 2014.
[15] H. Matsumoto, H. Kageyama, and Y. Miyazaki, “Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions,” Chem. Commun. vol. 2002, pp. 1726-1727, 2002.
[16] E. B. Carter, S. L. Culver, P. A. Fox, R. D. Goode, I. Ntai, M. D. Tickell, R. K. Traylor, N. W. Hoffman, and J. H. Davis Jr., “Sweet success: ionic liquids derived from non-nutritive sweeteners,” Chem. Commun., vol. 2004, pp. 630-631, 2004.
[17] P. Nockemann, B. Thijs, K. Driesen, C. R. Janssen, K. Van Hecke, L. Van Meervelt, S. Kossmann, B. Kirchner, and K. Binnemans, “Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities,” J. Phys. Chem. B, vol. 111, pp. 5254-5263, 2007.
[18] R. M. Vrikkis, K. J. Fraser, K. Fujita, D. R. MacFarlane, and G. D. Elliott, “Biocompatible ionic liquids. A new approach for stabilizing proteins in liquid formulation,” J. Biomech. Eng. vol. 131, paper 074514, 2009.
[19] M. G. Bogdanov, I. Svinyarov, R. Keremedchieva, A. Sidjimov, “Ionic liquid-supported solid-liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glaucium flavum Cr. (Papaveraceae),” Sep. Purif. Technol., vol. 97, pp. 221-227, 2012.
[20] M. Petkovic, D. O. Hartmann, G. Adamová, K. R. Seddon, L. P. N. Rebelo, and C. Silva Pereira, “Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia,” New J. Chem., vol. 36, pp. 56-63, 2012.
[21] J. Arning, S. Stolte, A. Böschen, F. Stock, W.-R. Pitner, U. Welz- Biermann, B. Jastorff, and J. Ranke, “Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase,” Green Chem., vol. 10, pp. 47-58, 2008.
[22] M. G. Bogdanov, D. Petkova, S. Hristeva, I. Svinyarov, and W. Kantlehner, “New guanidinium-based room-temperature ionic liquids. Substituent and anion effect on density and solubility in water,” Z. Naturforsch. B: J. Chem. Sci., vol. 65b, pp. 37-48, 2010.
[23] M. G. Bogdanov, I. Svinyarov, R. Keremedchieva, and A. Sidjimov, “Ionic liquid-supported solid-liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glaucium flavum Cr. (Papaveraceae),” Sep. Purif. Technol., vol. 97, pp. 221-227, 2012.
[24] M. G. Freire, C. M. S. S. Neves, I. M. Marrucho, J. A. P. Coutinho, and A. M. Fernandes, “Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids,” J. Phys. Chem. A, vol. 114, pp. 3744-3749, 2010.
[25] X. J. Cui, S. G. Zhang, F. Shi, Q. H. Zhang, X. Y. Ma, L. J. Lu, and Y. Q. Deng, “The influence of the acidity of ionic liquids on catalysis,” Chem. Sus. Chem., vol. 3, pp. 1043-1047, 2010.
[26] L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, “Molecular states of water in room temperature ionic liquids,” Phys. Chem. Chem. Phys., vol. 3, pp. 5192-5200, 2001.
[27] J. Sirieix-Plénet, L. Gaillon, and P. Letellier, “Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3- methylimidazolium bromide and water: Potentiometric and conductimetric studies,” Talanta, vol. 63, pp. 979-986, 2004.
[28] J. Dwan, D. Durant, and K. Ghandi, “Nuclear magnetic resonance spectroscopic studies of the trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures with water,” Cent. Eur. J. Chem., vol. 6 (3), pp. 347-358, 2008.