Search results for: Short circuit currents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1399

Search results for: Short circuit currents

1129 High Efficiency Class-F Power Amplifier Design

Authors: Abdalla Mohamed Eblabla

Abstract:

Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers.

An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.

Keywords: Power Amplifier (PA), Gallium Nitride (GaN), Agilent’s Advanced Design system (ADS) and lumped elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4109
1128 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
1127 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
1126 Low Cost Surface Electromyographic Signal Amplifier Based On Arduino Microcontroller

Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares

Abstract:

The development of an low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A / D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography is analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.

Keywords: Eletromyography, Arduino, Low-Cost, Atmel Atmega328 microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4883
1125 Design of a Novel Inclination Sensor Utilizing Grayscale Image

Authors: Tuhin Subhra Sarkar, Subir Das

Abstract:

Several research works have been done in recent times utilizing grayscale image for the measurement of many physical phenomena. In this present paper, we have designed an embedded based inclination sensor utilizing the grayscale image with a resolution of 0.3º. The sensor module consists of a circular shaped metal disc, laminated with grayscale image and an optical transreceiver. The sensor principle is based on temporal changes in light intensity by the movement of grayscale image with the inclination of the target surface and the variation of light intensity has been detected in terms of voltage by the signal processing circuit (SPC).The output of SPC is fed to a microcontroller program to display the inclination angel digitally. The experimental results are shown a satisfactory performance of the sensor in a small inclination measuring range of -40º to + 40º with a sensitivity of 62 mV/°.

Keywords: Grayscale image, Inclination Sensor, Microcontroller Program, Signal Processing Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1124 Reconfigurable Circularly Polarized Compact Short Backfire Antenna

Authors: M. Javid Asad, M. Zafrullah, Mian Shahzad Iqbal

Abstract:

In this research paper, a slotted coaxial line fed cross dipole excitation structure for short backfire antenna is proposed and developed to achieve reconfigurable circular polarization. The cross dipole, which is fed by the slotted coaxial line, consists of two orthogonal dipoles. The dipoles are mounted on the outer conductor of the coaxial line. A unique technique is developed to generate reconfigurable circular polarization using cross dipole configuration. The sub-reflector is supported by the feed line, thus requiring no extra support. The antenna is developed on elliptical ground plane with dielectric rim making antenna compact. It is demonstrated that cross dipole excited short backfire antenna can achieve voltage standing wave ratio (VSWR) bandwidth of 14.28% for 2:1 VSWR, axial ratio of 0.2 dB with axial ratio (≤ 3dB) bandwidth of 2.14% and a gain of more than 12 dBi. The experimental results for the designed antenna structure are in close agreement with computer simulations.

Keywords: Circularly polarized, compact, short backfireantenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1123 An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring

Authors: Kah-Hyong Chang, Xin Liu, Jia Hao Cheong, Saisundar Sankaranarayanan, Dexing Pang, Hongzhao Zheng

Abstract:

A digital baseband Application-Specific Integrated Circuit (ASIC) (yclic Redundancy Checkis developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm2 in chip area (digital baseband: 0.060 mm2, decimation filter: 0.056 mm2), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW).

Keywords: Biomedical sensor, decimation filter, Radio Frequency Integrated Circuit (RFIC) baseband, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1122 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk (In High Speed Circuits)

Authors: L. Tani, N. El Ouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in highspeed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: Multiconductor transmission line, Crosstalk, Finite difference time domain (FDTD), printed-circuit board (PCB), Rise time, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1121 Closely Parametrical Model for an Electrical Arc Furnace

Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel

Abstract:

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Keywords: Modelling, electrical arc, melting, power, EAF, steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3195
1120 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
1119 Conceptual Investigation of Short-Columns and Masonary Infill Frames Effect in the Earthquakes

Authors: Ebrahim Khalilzadeh Vahidi, Maryam Mokhtari Malekabadi

Abstract:

This paper highlights the importance of the selection of the building-s wall material,and the shortcomings of the most commonly used framed structures with masonry infills .The objective of this study is investigating the behavior of infill walls as structural components in existing structures.Structural infill walls are very important in structural behavior under earthquake effects. Structural capacity under the effect of earthquake,displacement and relative story displacement are affected by the structural irregularities .The presence of nonstructural masonry infill walls can modify extensively the global seismic behavior of framed buildings .The stability and integrity of reinforced concrete frames are enhanced by masonry infill walls. Masonry infill walls alter displacement and base shear of the frame as well. Short columns have great importance during earthquakes,because their failure may lead to additional structural failures and result in total building collapse. Consequently the effects of short columns are considered in this study.

Keywords: Short columns , Infill masonary wall , Buildings , Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418
1118 Learning Monte Carlo Data for Circuit Path Length

Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad

Abstract:

This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.

Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1117 A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18um CMOS

Authors: Sanaz Haddadian, Rahele Hedayati

Abstract:

A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).

Keywords: Analog Integrated Circuit Design, Sample & Hold Amplifier and CMOS Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
1116 Real Time Multi-Sensory Force Sensing Mat for Sports Biomechanics and Human Gait Analysis

Authors: D. Gouwanda, S. M. N. A. Senanayake

Abstract:

This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. It is capable of recording and monitoring ground reaction forces exerted by human foot during various activities such as walking, running and jumping in real time. In overall, force sensing mat mainly consists of three elements: the force sensing mat, signal conditioning circuit and data acquisition device. Force sensing mat is the mat that contains an array of force sensing elements. To control and process the incoming signal from the force sensing mat, Force-Logger and Force-Reloader are developed using National Instrument Labview. This paper describes the architecture of the force sensing mat, signal conditioning circuit and the real time streaming of the incoming data from the force sensing mat. Additionally, a preliminary experiment dataset is presented in this paper.

Keywords: Force platform, force sensing resistor, human gait analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
1115 Subthreshold Circuit Performance Investigation under Temperature Variations

Authors: Mohd. Hasan, Ajmal Kafeel, S. D. Pable

Abstract:

Ultra-low-power (ULP) circuits have received widespread attention due to the rapid growth of biomedical applications and Battery-less Electronics. Subthreshold region of transistor operation is used in ULP circuits. Major research challenge in the subthreshold operating region is to extract the ULP benefits with minimal degradation in speed and robustness. Process, Voltage and Temperature (PVT) variations significantly affect the performance of subthreshold circuits. Designed performance parameters of ULP circuits may vary largely due to temperature variations. Hence, this paper investigates the effect of temperature variation on device and circuit performance parameters at different biasing voltages in the subthreshold region. Simulation results clearly demonstrate that in deep subthreshold and near threshold voltage regions, performance parameters are significantly affected whereas in moderate subthreshold region, subthreshold circuits are more immune to temperature variations. This establishes that moderate subthreshold region is ideal for temperature immune circuits.

Keywords: Subthreshold, temperature variations, ultralow power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
1114 A Micro-Watt Second Order Filter for a Chopper Stabilized MEMS Pressure Sensor Interface

Authors: Arup K. George, Wai Pan Chan, Zhi Hui Kong, Minkyu Je

Abstract:

This paper describes a low-power second-order filter for a continuous-time chopper stabilized capacitive sensor interface, integrated with a fully differential post-CMOS surface-micromachined MEMS pressure sensor. The circuit uses a single-ended folded-cascode operational amplifier and two GM-C filters connected in cascade. The circuit is realized in a 0.18 μm CMOS process and offers differential to single-ended conversion. The novelty of the scheme is the cascade of two GM-C filters to achieve a second-order filter while minimizing power dissipation. The simulated filter cutoff frequency is 1.14 kHz at common-mode voltage 1.65 V, operating from a 3.3 V supply while dissipating 172μW of power. The filter achieves an operating range of 1V for an output load of 1MOhm and 10pF.

Keywords: Chopper Stabilization, MEMS, Pressure Sensors, Low Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1113 Double Loop Control of H-Bridge DC Chopper Fed Permanent Magnet DC Motor Drives Using Low Cost Hardware

Authors: Zin Maw Tun, Tun Lin Naing

Abstract:

This paper presents the two loop proportional integral (PI) controller for speed control of permanent magnet DC motor (PMDC) motor drive with H-bridge DC chopper. PMDC motors are widely used in many applications because of having a good performance and it is easy to apply the speed control. The speed can be adjusted by using armature voltage control as it had only the armature circuit. H-bridge DC chopper circuit is used to obtain the desired speed in any direction. In this system, the two loop PI controller is designed by using pole-zero cancellation method. The speed and current controller gains are considered depending on the sampling frequency of the microcontroller. An Arduino IO package is used to implement the control algorithm. Both simulation and experimental results are presented to prove the correctness of the mathematical model.

Keywords: Arduino IO package, double loop PI controller, H-bridge DC chopper, low cost hardware, PMDC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
1112 Hardware Stream Cipher Based On LFSR and Modular Division Circuit

Authors: Deepthi P.P., P.S. Sathidevi

Abstract:

Proposal for a secure stream cipher based on Linear Feedback Shift Registers (LFSR) is presented here. In this method, shift register structure used for polynomial modular division is combined with LFSR keystream generator to yield a new keystream generator with much higher periodicity. Security is brought into this structure by using the Boolean function to combine state bits of the LFSR keystream generator and taking the output through the Boolean function. This introduces non-linearity and security into the structure in a way similar to the Non-linear filter generator. The security and throughput of the suggested stream cipher is found to be much greater than the known LFSR based structures for the same key length.

Keywords: Linear Feedback Shift Register, Stream Cipher, Filter generator, Keystream generator, Modular division circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
1111 Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits

Authors: Santanu Santra, Utpal Roy

Abstract:

The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.

Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4412
1110 Analysis and Performance Evaluation of Noise-Reduction Transformer

Authors: Toshiaki Yanada, Kazumi Ishikawa

Abstract:

The present paper deals with the analysis and development of noise-reduction transformer that has a filter function for conductive noise transmission. Two types of prototype noise-reduction transformers with two different output voltages are proposed. To determine an optimum design for the noise-reduction transformer, noise attenuation characteristics are discussed based on the experiments and the equivalent circuit analysis. The analysis gives a relation between the circuit parameters and the noise attenuation. High performance step-down noise-reduction transformer for direct power supply to electronics equipment is developed. The input voltage of the transformer is 100 V and the output voltage is 5 V. Frequency characteristics of noise attenuation are discussed, and prevention of pulse noise transmission is demonstrated. Normal mode noise attenuation of this transformer is –80 dB, and common mode exceeds –90 dB. The step-down noise-reduction transformer eliminates pulse noise efficiently.

Keywords: conductive noise, EMC, EMI, noise attenuation, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1109 Prognostic and Diagnostic Modes of Mathematical Model for the Pre-operation of Suspended Sediment Transport model in Estuaries and Coastal areas

Authors: Worachat Wannawong, Chaiwat Ekkawatpanit, Sanit Wongsa

Abstract:

Both prognostic and diagnostic modes of a 3D baroclinic model in hydrodynamic and sediment transport models of the Princeton Ocean Model (POM) were conducted to separate prognose and diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the rivers to the Gulf of Thailand (GoT). Both transport modes of suspended sediment distribution in the GoT were numerically simulated. It could be concluded that the suspended sediment discharged from the rivers around the GoT. Most of sediments in estuaries and coastal areas are deposited outside the GoT under the condition of wind-driven current, and very small amount of the sediments of them are transported faraway. On the basis of wind forcing, sediments from the lower GoT to the upper GoT are mainly transported south-northwestward and also continuously moved north-southwestward. An obvious 3D characteristic of suspended sediment transport is produced in the wind-driven current residual circulation condition. In this study, the transport patterns at the third layer are generally consistent with the typhoon-induced strong currents in two case studies of Typhoon Linda 1997. The case studies presented the prognostic and diagnostic modes during 00UTC28OCT1997 to 12UTC06NOV1997 in a short period with the current condition for pre-operation of the suspended sediment transport model in estuaries and coastal areas.

Keywords: prognostic, diagnostic, baroclinic, sediment transport, estuaries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
1108 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
1107 Effect of TCSR on Measured Impedance by Distance Protection in Presence Single Phase to Earth Fault

Authors: Mohamed Zellagui, Abdelaziz Chaghi

Abstract:

This paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS) i.e. Thyristor Controlled Series Reactor (TCSR) on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by TCSR connected at midpoint of the line. This compensator used to inject active and reactive powers is controlled by three TCSR-s. The simulations results investigate the impacts of the TCSR on the parameters of short circuit calculation and parameters of measured impedance by distance relay in the presence of earth fault for three cases study.

Keywords: TCSR, Transmission line, Apparent reactance, Earth fault, Symmetrical components, Distance protection, Measured impedance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
1106 Thermodynamic Analysis of R507A-R23 Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor

Abstract:

The present work deals with thermodynamic analysis of cascade refrigeration system using ozone friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable and as R507A an azeotropic mixture there is no problem of temperature glide. This study thermodynamically analyzed R507A-R23 cascade refrigeration system to optimize the design and operating parameters of the system. The design and operating parameters include: Condensing, evaporating, subcooling and superheating temperatures in the high temperature circuit, temperature difference in the cascade heat exchanger, Condensing, evaporating, subcooling and superheating temperatures in the low temperature circuit.

Keywords: COP, R507A, R23, cascade refrigeration system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
1105 Interconnect Analysis of a Novel Multiplexer Based Full-Adder Cell for Power and Propagation Delay Optimizations

Authors: G.Ramana Murthy, C.Senthilpari, P.Velrajkumar, Lim Tien Sze

Abstract:

The proposed multiplexer-based novel 1-bit full adder cell is schematized by using DSCH2 and its layout is generated by using microwind VLSI CAD tool. The adder cell layout interconnect analysis is performed by using BSIM4 layout analyzer. The adder circuit is compared with other six existing adder circuits for parametric analysis. The proposed adder cell gives better performance than the other existing six adder circuits in terms of power, propagation delay and PDP. The proposed adder circuit is further analyzed for interconnect analysis, which gives better performance than other adder circuits in terms of layout thickness, width and height.

Keywords: Full Adder, Interconnect Analysis, Low-Power, Multiplexer, Propagation Delay, Parametric Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
1104 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.

Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management and measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
1103 Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation

Authors: T. Tanitteerapan, E.Thanpo

Abstract:

This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.

Keywords: High power factor converters, boost converters, low harmonic rectifiers, power factor correction, and current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
1102 Detecting Cavitation in a Vertical Sea water Centrifugal Lift Pump Related to Iran Oil Industry Cooling Water Circulation System

Authors: Omid A. Zargar

Abstract:

Cavitation is one of the most well-known process faults that may occur in different industrial equipment especially centrifugal pumps. Cavitation also may happen in water pumps and turbines. Sometimes cavitation has been severe enough to wear holes in the impeller and damage the vanes to such a degree that the impeller becomes very ineffective. More commonly, the pump efficiency will decrease significantly during cavitation and continue to decrease as damage to the impeller increases. Typically, when cavitation occurs, an audible sound similar to ‘marbles’ or ‘crackling’ is reported to be emitted from the pump. In this paper, the most effective monitoring items and techniques in detecting cavitation discussed in details. Besides, some successful solutions for solving this problem for sea water vertical Centrifugal lift Pump discussed through a case history related to Iran oil industry. Furthermore, balance line modification, strainer choking and random resonance in sea water pumps discussed. In addition, a new Method for diagnosing mechanical conditions of sea water vertical Centrifugal lift Pumps introduced. This method involves disaggregating bus current by device into disaggregated currents having correspondences with operating currents in response to measured bus current. Moreover, some new patents and innovations in mechanical sea water pumping and cooling systems discussed in this paper.

Keywords: Cavitation, Vibration Analysis, Centrifugal Pump, Vertical Pump, Sea Water Pump, Balance Line, Strainer, Time Wave Form (TWF), Fast Fourier Transform (FFT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4110
1101 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: Back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1100 Problems of Lifelong Education Course in Information and Communication Technology

Authors: Hisham Md Suhadi, Faaizah Shahbodin, Jamaluddin Hashim

Abstract:

The study is the way to identify the problems that occur in organizing short course’s lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed, there are the problems occur in organizing the short course for lifelong learning in ICT education.

Keywords: Lifelong education, information and communication technology (ICT), short course, ICT education, courses administrative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754