Search results for: Vertical Pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 633

Search results for: Vertical Pump

633 Detecting Cavitation in a Vertical Sea water Centrifugal Lift Pump Related to Iran Oil Industry Cooling Water Circulation System

Authors: Omid A. Zargar

Abstract:

Cavitation is one of the most well-known process faults that may occur in different industrial equipment especially centrifugal pumps. Cavitation also may happen in water pumps and turbines. Sometimes cavitation has been severe enough to wear holes in the impeller and damage the vanes to such a degree that the impeller becomes very ineffective. More commonly, the pump efficiency will decrease significantly during cavitation and continue to decrease as damage to the impeller increases. Typically, when cavitation occurs, an audible sound similar to ‘marbles’ or ‘crackling’ is reported to be emitted from the pump. In this paper, the most effective monitoring items and techniques in detecting cavitation discussed in details. Besides, some successful solutions for solving this problem for sea water vertical Centrifugal lift Pump discussed through a case history related to Iran oil industry. Furthermore, balance line modification, strainer choking and random resonance in sea water pumps discussed. In addition, a new Method for diagnosing mechanical conditions of sea water vertical Centrifugal lift Pumps introduced. This method involves disaggregating bus current by device into disaggregated currents having correspondences with operating currents in response to measured bus current. Moreover, some new patents and innovations in mechanical sea water pumping and cooling systems discussed in this paper.

Keywords: Cavitation, Vibration Analysis, Centrifugal Pump, Vertical Pump, Sea Water Pump, Balance Line, Strainer, Time Wave Form (TWF), Fast Fourier Transform (FFT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100
632 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine

Authors: K. Arunachalam, P. Mannar Jawahar

Abstract:

Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.

Keywords: Cooling system, Electric water pump, Mechanical water pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5551
631 Charge-Pump with a Regulated Cascode Circuit for Reducing Current Mismatch in PLLs

Authors: Jae Hyung Noh, Hang Geun Jeong

Abstract:

The charge-pump circuit is an important component in a phase-locked loop (PLL). The charge-pump converts Up and Down signals from the phase/frequency detector (PFD) into current. A conventional CMOS charge-pump circuit consists of two switched current sources that pump charge into or out of the loop filter according to two logical inputs. The mismatch between the charging current and the discharging current causes phase offset and reference spurs in a PLL. We propose a new charge-pump circuit to reduce the current mismatch by using a regulated cascode circuit. The proposed charge-pump circuit is designed and simulated by spectre with TSMC 0.18-μm 1.8-V CMOS technology.

Keywords: Phase-locked loop (PLL), charge-pump, phase/frequency detector (PFD), regulated cascode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3873
630 Towards the Integration of a Micro Pump in μTAS

Authors: Y. Haik

Abstract:

The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.

Keywords: Crescent micropumps, microanalysis, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
629 A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode

Authors: Kemal Çomakli, Uğur Çakir

Abstract:

This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.

Keywords: Air source heat pump, Energy Analysis, Heat Pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
628 A Study on Prediction of Cavitation for Centrifugal Pump

Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung

Abstract:

In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.

Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4159
627 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model

Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang

Abstract:

This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.

Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3716
626 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. 

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
625 Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump

Authors: Vishnu Prasad Sharma, S. Kumaraswamy, A. Mani

Abstract:

This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.

Keywords: Evacuation test, jet pump, nozzle profile, nozzle spacing, performance test, two phase flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270
624 An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump

Authors: Mohammad Taghi Shervani Tabar, Zahra Poursharifi

Abstract:

The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.

Keywords: Axial flow pump, Gap cavitation, Leakage vortex, Tip vortex cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
623 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, Check valve, Micro pump, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
622 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
621 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of this study. The performance of the designed model was evaluated through numerical analysis and experiment. The results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: Multiphase pump, Numerical analysis, Experiment, Performance evaluation, Reliability verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
620 CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings

Authors: Krishnan V. Pagalthivarthi, Pankaj K. Gupta, Vipin Tyagi, M. R. Ravi

Abstract:

Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.

Keywords: Centrifugal pump casing, Dense slurry, Solidsconcentration, Wall shear stress, Pump geometric parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4827
619 Design of High Gain, High Bandwidth Op-Amp for Reduction of Mismatch Currents in Charge Pump PLL in 180 nm CMOS Technology

Authors: R .H. Talwekar, S. S Limaye

Abstract:

The designing of charge pump with high gain Op- Amp is a challenging task for getting faithful response .Design of high performance phase locked loop require ,a design of high performance charge pump .We have designed a operational amplifier for reducing the error caused by high speed glitch in a transistor and mismatch currents . A separate Op-Amp has designed in 180 nm CMOS technology by CADENCE VIRTUOSO tool. This paper describes the design of high performance charge pump for GHz CMOS PLL targeting orthogonal frequency division multiplexing (OFDM) application. A high speed low power consumption Op-Amp with more than 500 MHz bandwidth has designed for increasing the speed of charge pump in Phase locked loop.

Keywords: Charge pump (CP) Orthogonal frequency divisionmultiplexing (OFDM), Phase locked loop (PLL), Phase frequencydetector (PFD), Voltage controlled oscillator (VCO),

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374
618 Analysis of Building Response from Vertical Ground Motions

Authors: George C. Yao, Chao-Yu Tu, Wei-Chung Chen, Fung-Wen Kuo, Yu-Shan Chang

Abstract:

Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.

Keywords: Vertical ground motion, vertical amplification factor, natural frequency, component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
617 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure

Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru

Abstract:

On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.

Keywords: Modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
616 Design Optimization for Efficient Erbium-Doped Fiber Amplifiers

Authors: Parekhan M. Aljaff, Banaz O. Rasheed

Abstract:

The exact gain shape profile of erbium doped fiber amplifiers (EDFA`s) are depends on fiber length and Er3 ion densities. This paper optimized several of erbium doped fiber parameters to obtain high performance characteristic at pump wavelengths of λp= 980 nm and λs= 1550 nm for three different pump powers. The maximum gain obtained for pump powers (10, 30 and 50mw) is nearly (19, 30 and 33 dB) at optimizations. The required numerical aperture NA to obtain maximum gain becomes less when pump power increased. The amplifier gain is increase when Er+3doped near the center of the fiber core. The simulation has been done by using optisystem 5.0 software (CAD for Photonics, a license product of a Canadian based company) at 2.5 Gbps.

Keywords: EDFA, Erbium Doped Fiber, optimization OpticalAmplifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435
615 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: Jet pump, air bubbles size, retention time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
614 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump

Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim

Abstract:

Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.

Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
613 Study of the Vertical Handoff in Heterogeneous Networks and Implement Based On Opnet

Authors: W. Benaatou, A. Latif

Abstract:

In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS andWiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.

Keywords: Vertical handoff, WLAN, UMTS, WIMAX, Heterogeneous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
612 Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump

Authors: Mohammad T. Shervani-Tabar, Navid Shervani-Tabar

Abstract:

Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.

Keywords: Axial Flow Pump, Cavitation, Gap Cavitation, Tip Vortex Cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
611 Direct Torque Control - DTC of Induction Motor Used for Piloting a Centrifugal Pump Supplied by a Photovoltaic Generator

Authors: S. Abouda, F. Nollet, A. Chaari, N. Essounbouli, Y. Koubaa

Abstract:

In this paper we propose the study of a centrifugal pump control system driven by a three-phase induction motor, which is supplied by a PhotoVoltaic PV generator. The system includes solar panel, a DC / DC converter equipped with its MPPT control, a voltage inverter to three-phase Pulse Width Modulation - PWM and a centrifugal pump driven by a three phase induction motor. In order to control the flow of the centrifugal pump, a Direct Torque Control - DTC of the induction machine is used. To illustrate the performances of the control, simulation results are carried out using Matlab/Simulink.

Keywords: Photovoltaic generators, Maximum power point tracking (MPPT), DC/DC converters, Induction motor, Direct torque control (DTC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
610 The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

Authors: S. Himran, B. Mire, N. Salam, L. Sule

Abstract:

This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourly global solar radiation during the day is an average of 506 W/m2. This study also presents the I-V characteristics of the panel at global radiations 200, 400, 600, 800 and 1000 W/m2 matched with the operation of the pump at the above lifting heads. It proves that the only solar radiations 800 and 1000 W/m2 could provide lifting head from 1m to 7m. The analysis shows the best efficiency point of the performance of solar cell panel system occurs at the pumping head 2.89 m.

Keywords: Solar cell, dc- motor-pump, I-V characteristics, best efficiency point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
609 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: M. Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2fw, 3fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: Simplified method, Human walking vertical force, Higher component, Pedestrian bridge vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
608 Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt

Authors: Yomna Amr Ahmed Lotfi Koraim, Dalia Moati Rasmi Elkhateeb

Abstract:

Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt.

Keywords: Vertical landscape, green facades, social acceptance, sustainable urban development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
607 Investigation of Recirculation Effects on the Formation of Vapor Bubbles in Centrifugal Pump Blades

Authors: Mohammad Taghi Shervani Tabar, Seyyed Hojjat Majidi, Zahra Poursharifi

Abstract:

Cavitation in pumps is known as the formation of vapor bubbles due to pressure drop and collapsing these bubbles. In some conditions, it has been observed that the formation of bubbles occurs at the pressure side of centrifugal pump blades. In this study, the formation of bubbles at the pressure side of blades has been investigated. Water is used in this study as the fluid and performance curves were depicted for different flow rates in an approximately constant speed. The results show that when a centrifugal pump works in low flow rates, a secondary flow namely recirculation starts to begin. In this condition, separation of flow increases which causes vortex formation and local pressure drop and eventually the formation of vapor bubbles starts.

Keywords: Cavitation, Centrifugal pump, Recirculation, Vapor bubble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4021
606 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039
605 Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation

Authors: Isao Tomita

Abstract:

We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via χ(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only χ(2)-nonlinearity, where sum-frequency generation in the χ(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device.

Keywords: Cavity, periodically-poled LiNbO3, sum-frequency generation, third-harmonic generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
604 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977