Search results for: flame stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1364

Search results for: flame stability

1124 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner

Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati

Abstract:

Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formation

Keywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1123 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft

Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee

Abstract:

Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.

Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
1122 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
1121 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: Air-conditioned coaches, fire propagation, flame contour, soot flow, train fire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
1120 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
1119 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
1118 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System

Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami

Abstract:

In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.

Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
1117 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1116 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: Nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1115 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, Combustion, Emissions, Gas Turbine Combustor, Gasification, Solid Waste, Syngas and Waste to Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3653
1114 Thermal Stability of a Vertical SOI-Based Capacitorless One-Transistor DRAM with Trench-Body Structure

Authors: Po-Hsieh Lin, Jyi-Tsong Lin

Abstract:

A vertical SOI-based MOSFET with trench body structure operated as 1T DRAM cell at various temperatures has been studied and investigated. Different operation temperatures are assigned for the device for its performance comparison, thus the thermal stability is carefully evaluated for the future memory device applications. Based on the simulation, the vertical SOI-based MOSFET with trench body structure demonstrates the electrical characteristics properly and possess conspicuous kink effect at various operation temperatures. Transient characteristics were also performed to prove that its programming window values and retention time behaviors are acceptable when the new 1T DRAM cell is operated at high operation temperature.

Keywords: SOI, 1T DRAM, thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
1113 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
1112 Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation

Authors: Chigbogu G. Ozoegwu, Sam N. Omenyi

Abstract:

The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.

Keywords: Chatter, flip bifurcation, modified full-discretization map stability lobe, secondary Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1111 Assessment of Slope Stability by Continuum and Discontinuum Methods

Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid

Abstract:

The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.

Keywords: Comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
1110 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.

Keywords: Dynamic load, modeling, Voltage Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
1109 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1108 Coordination between SC and SVC for Voltage Stability Improvement

Authors: Ali Reza Rajabi, Shahab Rashnoei, Mojtaba Hakimzadeh, Amir Habibi

Abstract:

At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.

Keywords: Static VAR Compensator (SVC), Series Capacitor (SC), voltage stability, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1107 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1106 Linear Instability of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability analysis of wake-shear layers in twophase shallow flows is performed in the present paper. Twodimensional shallow water equations are used in the analysis. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. The stability calculations are performed for different values of the particle loading parameter and two other parameters which characterize the velocity ratio and the velocity deficit. The results show that the particle loading parameter has a stabilizing effect on the flow while the increase in the velocity ratio or in the velocity deficit destabilizes the flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1105 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

Authors: Mukesh Kumar Awasth, Mohammad Tamsir

Abstract:

The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1104 Stability and Bifurcation Analysis in a Model of Hes1 Selfregulation with Time Delay

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

The dynamics of a delayed mathematical model for Hes1 oscillatory expression are investigated. The linear stability of positive equilibrium and existence of local Hopf bifurcation are studied. Moreover, the global existence of large periodic solutions has been established due to the global bifurcation theorem.

Keywords: Hes1, Hopf bifurcation, time delay, transcriptional repression loop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1103 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
1102 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population.

Keywords: Backward bifurcation, cholera, equilibrium, dynamics, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
1101 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1100 Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses

Authors: A. Parizad, A. Khazali, M. Kalantar

Abstract:

Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.

Keywords: FACTS Devices, Voltage Stability Index, optimal location, Heuristic methods, Harmony search, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
1099 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1098 Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Authors: K. Jarmkom, P. Eakwaropas, W. Khobjai, S. Techaeoi

Abstract:

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Keywords: GC-MS analysis, essential oils, stability, Pang-Rum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1097 The First Integral Approach in Stability Problem of Large Scale Nonlinear Dynamical Systems

Authors: M. Kidouche, H. Habbi, M. Zelmat, S. Grouni

Abstract:

In analyzing large scale nonlinear dynamical systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solutions properties of the large scale system are then deduced from the solution properties of the individual subsystems and the nature of the interconnections. In this paper a new approach is proposed for the stability analysis of large scale systems, which is based upon the concept of vector Lyapunov functions and the decomposition methods. The present results make use of graph theoretic decomposition techniques in which the overall system is partitioned into a hierarchy of strongly connected components. We show then, that under very reasonable assumptions, the overall system is stable once the strongly connected subsystems are stables. Finally an example is given to illustrate the constructive methodology proposed.

Keywords: Comparison principle, First integral, Large scale system, Lyapunov stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1096 Investigation on the Stability of Rock Slopes Subjected to Tension Cracks via Limit Analysis

Authors: W. Wu, S. Utili

Abstract:

Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.

Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
1095 Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm

Authors: P. Suryakumari, P. Kantarao

Abstract:

Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.

Keywords: RPD problem, voltage stability enhancement, CSO algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439