%0 Journal Article
	%A Sh.Khalilarya and  H.Oryani and  S.Jafarmadar and  H.Khatamnezhad and  A.Nemati
	%D 2010
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 47, 2010
	%T Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner
	%U https://publications.waset.org/pdf/5459
	%V 47
	%X Understanding of how and where NOx formation
occurs in industrial burner is very important for efficient and clean
operation of utility burners. Also the importance of this problem is
mainly due to its relation to the pollutants produced by more burners
used widely of gas turbine in thermal power plants and glass and steel
industry.
In this article, a numerical model of an industrial burner operating
in MILD combustion is validated with experimental data.. Then
influence of air flow rate and air temperature on combustor
temperature profiles and NOX product are investigated. In order to
modification this study reports on the effects of fuel and air dilution
(with inert gases H2O, CO2, N2), and also influence of lean-premixed
of fuel, on the temperature profiles and NOX emission.
Conservation equations of mass, momentum and energy, and
transport equations of species concentrations, turbulence, combustion
and radiation modeling in addition to NO modeling equations were
solved together to present temperature and NO distribution inside the
burner.
The results shows that dilution, cause to a reduction in value of
temperature and NOX emission, and suppresses any flame
propagation inside the furnace and made the flame inside the furnace
invisible. Dilution with H2O rather than N2 and CO2 decreases further
the value of the NOX. Also with raise of lean-premix level, local
temperature of burner and the value of NOX product are decreases
because of premixing prevents local “hot spots" within the combustor
volume that can lead to significant NOx formation. Also leanpremixing
of fuel with air cause to amount of air in reaction zone is
reach more than amount that supplied as is actually needed to burn
the fuel and this act lead to limiting NOx formation
	%P 1215 - 1221