
 

 

  
Abstract—Linear stability analysis of wake-shear layers in two-

phase shallow flows is performed in the present paper. Two-
dimensional shallow water equations are used in the analysis. It is 
assumed that the fluid contains uniformly distributed solid particles. 
No dynamic interaction between the carrier fluid and particles is 
expected in the initial moment. The stability calculations are 
performed for different values of the particle loading parameter and 
two other parameters which characterize the velocity ratio and the 
velocity deficit. The results show that the particle loading parameter 
has a stabilizing effect on the flow while the increase in the velocity 
ratio or in the velocity deficit destabilizes the flow. 
 

Keywords—Linear stability, Shallow flows, Wake-shear flows. 

I. INTRODUCTION 
flow is considered to be shallow if the transverse length 
scale of the flow is much larger than water depth. 

Shallow flows often occur in nature and engineering. One 
example is wake flow behind obstacles (such as islands).  

Methods of linear stability theory are often used to analyze 
shallow flows [1] – [4]. Three different flow regimes in 
shallow wake flows, namely, steady bubble, unsteady bubble 
and vortex street are identified experimentally in [5]. In 
addition, theoretical studies in [2] – [4] showed that the three 
regimes are related to convective/absolute instability of the 
flow.  

Linear stability of two-phase flows in deep water is 
analyzed in [6], [7]. Such flows often occur in applications. 
Examples include liquid-gas bubble or particle-laden flows. 
The analysis in [6] and [7] is based on some simplifying 
assumptions. First, it is assumed that small perturbations 
imposed on the flow have no effect on the particles during the 
initial moment. Second, the particle distribution is assumed to 
be uniform. The dynamic interaction of particles with fluid is 
considered in [8]. The case of differential particle loading is 
analyzed in [9]. In general, it is found in [6]-[9] that if the 
particle loading parameter increases then the flow becomes 
more stable. Linear stability of two-phase shallow wake flows 
is analyzed in [10].  

Experimental analysis of the structure of shallow wake 
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flows [5] shows that there are also shear layers across the 
wake. The effect of shear on the stability of wake flows is 
analyzed in [11], [12] for the case of deep water flows. Linear 
instability of wake-shear layers in shallow water is studied in 
[13] where it is shown that the increase in the velocity deficit 
destabilizes the flow.  

In the present paper we perform a linear stability analysis of 
wake-shear layers in two-phase shallow flows under the 
simplifying assumptions used in [6], [7].  

II. LINEAR STABILITY ANALYSIS 
Consider the two-dimensional shallow water equations of 

the form 
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where u and v  are the depth-averaged velocity components 

in the x and y directions, respectively, pu and pv are the 

velocity components of the particles, h is water depth, fc is 

the friction coefficient,  p is the pressure and B is the 
particle loading parameter (see [6], [7]). The system (1) – (3) 
is derived under some simplifying assumptions that are 
discussed in [6] and [7] in detail. In particular, the dynamic 
interaction of particles and the fluid is not considered in the 
model.  
     Introducing the stream function by the relations 
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 and eliminating the pressure we transform the system (1) – 
(3) to the form 
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        Assuming that )()( 00 yuyy =ψ is the base flow 

solution and imposing small perturbations on the base flow, 
the stream function can be written in the form 

2
0 1 2( ) ( , , ) ( , , ) ...y x y t x y tψ ψ εψ ε ψ= + + +           (6) 

Substituting (6) into (5) and keeping only linear terms with 
respect to ε , we obtain 

1 0Lψ = ,                                                                    (7) 
where  
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   Using the method of normal modes we seek the solution 
to (7) in the form 

1 1( , , ) ( ) exp[ ( )]x y t y ik x ctψ ϕ= − ,                           (8) 

where 1( )yϕ is the amplitude of the normal perturbation. 
Substituting (8) into (7) we obtain the modified Rayleigh 
equation of the form 

( )

'' '
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where 
2

fc b
S

h
= is the bed-friction number (see [1]) and b is 

the half-width of the wake. The boundary conditions are 

1( ) 0ϕ ±∞ =                                                                (10)     
Problem (9) – (10) describes the linear stability of the base 
flow )(0 yuu = .  In fact, (9) – (10) is an eigenvalue problem 

where the eigenvalues are r ic c ic= + . The flow 

)(0 yuu = is said to linearly stable if all ic are negative and 

unstable if at least one ic is positive.  
      The base flow velocity profile in the present study is 
chosen in the form 

yr
y

fyu tanh
cosh

1)( 20 +−= ,                              (11) 

where r is the velocity ratio (i.e., the velocity difference 
across the layer divided by the mean velocity) and f is the 
wake deficit parameter (i.e., the velocity deficit divided by the 
mean ambient velocity). The cases of a wake flow or a mixing 
layer are obtained from (11) if 0=r or 0=f , respectively. 

The presence of the two parameters f and r  allows one  to 
investigate the effect of shear on the stability of wake flows. 
The profile (11) was suggested in [12] for the stability 
analysis of wake-shear layers in deep water and is adopted in 
the present study. 
        Problem (9) – (10) is solved numerically by means of the 
pseudospectral collocation method. The Chebyshev 
polynomials are chosen as the base functions. Since problem 

(9) – (10) is defined on the infinite interval y−∞ < < +∞  , 

we use the transformation  
2 arctanz y
π

= to map the 

interval ),( +∞−∞  onto (-1,1). The solution to (9) – (10) (in 
terms of the variable z ) is sought in the form 

 2
1

0
( ) (1 ) ( )

N

k k
k

z a z T zϕ
=

= −∑ ,                                     (12) 

where  ( )kT z is the Chebyshev polynomial of degree k . The 

factor 21 z− is added to (12) in order to simplify the 
numerical solution of (9), (10) since the boundary conditions 
(10) (in terms of the variable z ) are satisfied automatically.  
The collocation points are 

cosj
jz

N
π

= , .,...,1,0 Nj =                                    (13) 

Evaluating the function )(1 zϕ and its derivatives at the 
collocation points (13) we obtain the generalized eigenvalue 
problem of the form 

0)( =− aBA λ                                                         (14) 

where A and B are complex-valued matrices and  
T

Naaaa )...( 21= , 
where the subscript T denotes the transpose.  
Problem (14) is solved numerically by means of IMSL routine 
DGVCCG. Marginal stability curves for different values of 
f  and B are shown in Figs. 1 – 3. The velocity ratio (the 

value of r ) is fixed at 40.=r . The increase in the value of 
the parameter f corresponds to the increase in the velocity 
deficit in the wake.  
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Fig. 1 Marginal stability curves for different values of f at 

0=B and 40.=r . 
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Fig. 2 Marginal stability curves for different values of f at 

020.=B and 40.=r . 
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Fig. 3 Marginal stability curves for different values of f at 

040.=B and 40.=r . 
 
As can be seen from Figs. 1 – 3, the increase of the velocity 

deficit leads to less stable flow (the values of the parameter 
S on the marginal stability curves also increase). In addition, 
the flow becomes more stable when the particle loading 
parameter B increases. 

Marginal stability curves for different values of r  and 
B are shown in Figs. 4 – 6. The velocity deficit (the value of 
f ) is fixed at 30.=f . 
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Fig. 4 Marginal stability curves for different values of r at 

0=B and 30.=f . 
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Fig. 5 Marginal stability curves for different values of r at 

020.=B and 30.=f . 
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Fig. 6 Marginal stability curves for different values of r at 

040.=B and 30.=f . 
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It follows from Figs. 4 – 6 that for a fixed velocity deficit 
( f ) the increase in the velocity ratio ( r ) destabilizes the 
flow. The stabilizing effect of the particle loading parameter 
B is clearly seen in Figs. 4 – 6.  

The critical values of )max( SSS
kc = for different values 

of the particle loading parameter B and 30.=f are shown 
in Fig. 7.  
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Fig. 7 Critical values of the parameter S  versus r at  

30.=f and different values of B . 

As can be seen from the figure, the critical values of S grow 
almost linearly as a function of r .  

The critical values of S versus f are plotted in Fig. 8 for 

different values of B .  
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Fig. 8 Critical values of the parameter S  versus f at  

30.=r and different values of B . 
The increase of the velocity deficit results in more unstable 

flow (the parameter S increases). Note that the growth is not 
linear, the critical values of the stability parameter increase 
faster as the parameter f increases. 

Several conclusions can be drawn from Figs. 1 – 8. First, 
the particle loading parameter B has a stabilizing influence on 

the flow. Second, the increase of the wake velocity deficit for 
a fixed velocity ratio (this amount is related to the magnitude 
of shear) results in less stable flow. Third, if the velocity 
deficit is fixed at a constant level, the flow becomes more 
unstable when the velocity ratio increases. 

III. DISCUSSION 
Linear stability analysis of wake-shear layers in two-phase 

shallow flows is presented in this paper. It is known that there 
are regions of absolute and convective instability in the 
parameter space for wake flows (if the velocity deficit is large 
enough) and for mixing layers (if the velocity ratio of two 
streams moving in the opposite direction is large enough), [2]-
[4]. Since the base flow profile used in our paper simulates the 
presence of shear in wake flows, it is plausible to assume that 
wake-shear layers for two-phase shallow flows can be 
absolutely unstable in some regions of the parameter space. 
The authors are currently working on this problem.  

In addition, it is shown in [3] that if the bed-friction number 
S is slightly smaller than the critical value then the 
development of the most unstable mode is described by the 
complex Ginzburg-Landau equation. Examples of calculation 
of the coefficients of the Ginzburg-Landau equation for two-
phase shallow wake flows are given in [10]. It is shown in 
[10] that for shallow wake flows the instability is supercritical 
(e.g., finite amplitude equilibrium is possible). Application of 
the Ginzburg-Landau model to wake-shear layers in two-
phase shallow flows is the topic for future work.  
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