
 

 

  
Abstract—Based on the kinematic approach of limit analysis, a 

full set of upper bound solutions for the stability of homogeneous rock 
slopes subjected to tension cracks are obtained. The generalized 
Hoek-Brown failure criterion is employed to describe the non-linear 
strength envelope of rocks. In this paper, critical failure mechanisms 
are determined for cracks of known depth but unspecified location, 
cracks of known location but unknown depth, and cracks of 
unspecified location and depth. It is shown that there is a nearly up to 
50% drop in terms of the stability factors for the rock slopes 
intersected by a tension crack compared with intact ones. Tables and 
charts of solutions in dimensionless forms are presented for ease of use 
by practitioners. 
 

Keywords—Hoek-Brown failure criterion, limit analysis, rock 
slope, tension cracks. 

I. INTRODUCTION 
OCK slopes are treated as intact continuums in most of the 
classic models in geotechnical engineering. However, 

even with the naked eye, tension cracks can be seen on the 
surfaces of most rock slopes. Since the surfaces of cracks have 
much poorer characteristics than the intact rock, it is necessary 
to consider whether tension cracks can give any indication of 
slope instability. However, it is extremely difficult to quantify 
the impact of tension cracks since their lengths and locations 
are unknown.  

A linear Mohr-Coulomb (M-C) failure criterion is widely 
applied in the study of rock slope stability. Based on the 
Mohr-Coulomb failure criterion, Limit equilibrium is 
implemented to evaluate the influence of cracks on soil slope 
stability (e.g. [1], [2]) and rock slopes (e.g. [3]) as well. 
Recently, Utili [4] used limit analysis to investigate the stability 
of slopes made of cohesive soils with cracks. Likewise, 
Michalowski [5] proposed a similar technique to assess the 
stability of rock slopes under the assumption of planar failure 
mechanisms. The authors advocate limit analysis over limit 
equilibrium, because the latter cannot be proved to be rigorous 
due to the arbitrary assumptions made regarding the interslice 
forces [6].  

However, geotechnical materials exhibit certain degree of 
non-linearity, which is very significant for rocks. The 
non-linear Hoek-Brown (H-B) failure criterion, known as the 
most accepted one for rock, was proposed by Hoekand Brown 
[7]. Collins et al. [8] developed a "tangent line" technique to 
study the stability of intact rock slopes made of Hoek-Brown 
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material with limit analysis. Yang et al. [9] improved the 
analysis of Collins et al. [8] with recent modifications on the 
generalized Hoek-Brown failure criterion [10]. Neither Collins 
et al. [8] nor Yang et al. [9] considered the presence of tension 
cracks. 

In this paper, the stability of rock slopes subjected to tension 
cracks will be investigated by using limit analysis. Although 
rock masses always exhibit discontinuity surfaces of various 
sizes and orientations, we assume only one tension crack 
appears as the weak plane within the rock mass. For the rest of 
the rock slope, there are a sufficient number of closely spaced 
discontinuities with similar surface characteristics and their 
sizes are small compared with the rock slope. Thus, the rock 
slope can be treated as an isotropic Hoek-Brown material [7]. 

II. HOEK-BROWN FAILURE CRITERION 
All geotechnical materials show a certain degree of 

non-linear features (e.g. [7]). Thus, it is necessary to implement 
a non-linear failure criterion to make accurate predictions on 
the stability of rock slopes.  

Based on the result of a series of field investigations and 
triaxial tests on rocks, Hoek & Brown ([7], [11], [12]) and Hoek 
et al. [10] introduced the well-known Hoek-Brown failure 
criterion which has become the most employed method for the 
characterization of rock strength by far. The original H-B 
failure criterion can be expressed as 

 

 2
1 3 3 ci cim sσ σ σ σ σ= + +  (1) 

 
with 1σ , 3σ the major and minor principle stress respectively, 

ciσ uniaxial compression strength for intact rock, m a 
parameter related to the rock type considered and s degree of 
fracturing of the rock mass.  

The original Hoek-Brown failure criterion was designed for 
intact rock with high cohesion. In Hoek et al. [10], a new 
parameter n is introduced to extend the applicability of the 
criterion to loose and broken rocks. Thus, the generalized 
Hoek-Brown failure criterion can be written as 

 

 3
1 3

n

ci
ci

m s
σ

σ σ σ
σ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (2) 

 
with n a parameter accounting for degree of imperfection of the 
rock mass. The failure envelop for the H-B failure criterion in 
terms of major and minor principle stresses is shown in Fig. 1.  
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Fig. 1 Hoek-Brown failure criterion 

III. ROCK SLOPE STABILITY ANALYSIS 
Although there is no lower/upper bound solution available 

for the stability of rock slopes with cracks, it was still expected 
by Li et al. [13] that the rigorous limit analysis results were 
found to bracket the true slope stability number to within ±9% 
or better for the intact case. In this paper, the upper bound 
solutions following the Mohr-Coulomb failure criterion are 
provided in the first place. The solutions are not directly 
applicable to materials obeying the H-B criterion. However, in 
principle, limit analysis can still be employed as long as the 
material considered obeys the normality rule. A detailed upper 
bound solution of a rock slope with a vertical tension crack will 
be given in this section.  

A. Limit Analysis for Mohr-Coulomb Failure Criterion  
For illustrative purposes, only a horizontal upper slope with 

failure line passing through the slope toe is examined (see Fig. 
2). For more general cases like failure line passing below the 
slope toe and the non-horizontal upper slope are illustrated in 
Appendix I-II. The slope has a height of H and an inclination of
β , with a region of rock E-D-C-B rigidly rotating away about a 
center of rotation P . The remaining part is bound by a crack 
B-C and logarithmic spiral D-C with an equation written in 
polar coordinates with reference to P  

 

( )0 0exp tanr r φ θ θ= −⎡ ⎤⎣ ⎦  
 

with r the distance of a generic point of the spiral to its center, 
θ the angle formed by r with a reference axis (see Fig. 2), and 

0θ and 0γ identifying the angle and distance of a particular point 
of the spiral to its center. According to normality rule [14], the 
angle between the sliding rate u  of the rock mass and the 
failure line D-C must always equal toφ . However, it is not the 
case for the angle ϕ between u and the crack B-C, which can 
be different from φ  (Utili [4]). 

From Fig. 2, the following geometrical relationships can be 
obtained as 

 
 ( )exp tanr rς χ φ ζ χ= −⎡ ⎤⎣ ⎦        (3) 

 
and

 
 ( )exp tanr rν χ φ ν χ= −⎡ ⎤⎣ ⎦        (4) 

with rς and rν the radii of the spiral at the ζ and ν angles 
respectively, and  
 

 ( ){ }exp tan sin sinH rχ φ ν χ ν χ= − −⎡ ⎤⎣ ⎦  (5) 

 ( ){ }exp tan sin sinrχδ φ ζ χ ζ χ= − −⎡ ⎤⎣ ⎦  (6) 

 
( ) ( ) ( )

1

sin sin
exp tan

sin sin
L rχ

χ β ν β
φ ν χ

β β
+ +⎧ ⎫⎪ ⎪= − −⎡ ⎤⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭  

(7) 

 ( ){ }2 cos exp tan cosL rχ χ φ ζ χ ζ= − −⎡ ⎤⎣ ⎦  (8) 
 
with 1L and 2L  horizontal lengths as indicated in Fig. 2, and δ
being the crack depth.  

Three different types of mechanisms will be analyzed: 
(a) slopes with a crack of known depth but unknown location 
(b) slopes with a crack of known location but unknown depth 
(c) slopes with cracks of unknown location and depth 

In conditions (a) and (b), certain geometric constraints are 
introduced for the selections of ,χ ν and ζ . For cracks of 
known depth, the following constraint is found 

 

 
( ) ( )

( )

exp tan sin exp tan sin 1

exp tan sin

H

H

δφ ζ ζ φ χ χ

δ φ ν ν

⎛ ⎞⋅ = ⋅ − +⎜ ⎟
⎝ ⎠

⋅

 (9) 

 
Similarly, for cracks of known location, it is concluded as 
 

 
( ) ( )
( ) ( )

exp tan sin exp tan sin

exp tan cos exp tan cos
/x H

φ χ χ φ ν ν

φ ν ν φ ζ ζ

⋅ = ⋅ +

⋅ − ⋅

   

 (10) 

 
Then, the internally dissipated energy dW  along the failure 

line D-C and the external work rate extW for the slope are to be 
detailed respectively. 
 

 
Fig. 2 Failure mechanism 

 
According to upper bound theorem and the assumed 

kinematic mechanism, energy is dissipated only along the 
logarithmic spiral shaped failure line D-C, which is indicated as 
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Γ in the integral 
 

 
( )

2

2

cos
cos

exp 2 tan

d
rdW cu c r d

c r d
ζ

ζ ν

θφ ω θ
φ

ω φ θ ζ θ

Γ Γ
= = =

−⎡ ⎤⎣ ⎦

∫ ∫

∫     

 (11) 

 
from which the following expression is obtained 
 

( )
( )

( )

2

2

exp 2 tan 1
exp 2 tan

2 tan
, , ,

d

d

W c r

c r f

χ

χ

φ ν ζ
ω φ ζ χ

φ
ω χ ν ζ φ

− −⎡ ⎤⎣ ⎦= − =⎡ ⎤⎣ ⎦ (12) 

 
As shown in Utili [4], the rate of external work due to the 

rock weight of region E-B-C-D is computed as the work done 
by region E-F-D minus the work of region B-F-C. And the rate 
of external work for region E-F-D is the result of work done by 
P-F-D subtract P-F-E and P-E-D. Likewise, work done by 
B-F-C is expressed by the summation of work done by P-F-C 
subtract P-F-B and P-B-C. 1W , 2W , 3W , 4W , 5W  and 6W
indicate the work done by P-F-D, P-F-E, P-E-D, P-F-C, P-F-B 
and P-B-C respectively. Therefore, the total rate of external 
work due to the rock weight is given by 

 

 

( )

( )

1 2 3 4 5 6

1 2 3 4 5 6

3
1 2 3 4 5 6

    

     = r

W W W W W W W

W W W W W W

f f f f f f

γ

χωγ

= − − − − −

= − − − + +

− − − + +     

 (13) 

 

The calculation of the work rates 1W , 2W , 3W , 4W , 5W  and 
6W can be found in Chen [14] and Utili [4], so here only the 

final expressions are given: 
 

 ( ) ( )
( )

( )

3
1 2

3
1

exp 3tan 3tan cos sin 3tan cos sin

3 1 9 tan

    , ,

W r

r f

χ

χ

φ ν χ φ ν ν φ χ χ
ωγ

φ

ωγ χ ν φ

− + − −⎡ ⎤⎣ ⎦=
+

=

 (14) 

 ( )3 31 1
2 2

1 sin 2cos , , ,
6

L L
W r r f

r rχ χ
χ χ

ωγ χ χ ωγ χ ν β φ
⎡ ⎤⎛ ⎞

= − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (15) 

 

( ) ( )

( )

( )

1

3
3

1

3
3

1 exp tan sin sin
6

cos cos exp tan

    , , ,

L
r

W r
L
r

r f

χ

χ

χ

χ

φ ν χ ν χ ν

ωγ

χ ν φ ν χ

ωγ χ ν β φ

⎡ ⎤⎡ ⎤
− − −⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎢ ⎥⎣ ⎦= ⎢ ⎥
⎧ ⎫⎢ ⎪ ⎪ ⎥× − + −⎡ ⎤⎨ ⎬⎣ ⎦⎢ ⎥
⎪ ⎪⎩ ⎭⎣ ⎦

=

(16) 

 
( ) ( )

( )
( )

3
4 2

3
1

exp 3tan 3tan cos sin 3tan cos sin

3 1 9 tan

     , ,

W r

r p

χ

χ

φ ζ χ φ ζ ζ φ χ χ
ωγ

φ

ωγ χ ζ φ

− + − −⎡ ⎤⎣ ⎦=
+

=

 (17) 

 ( )3 32 2
5 2

1 sin 2cos , ,
6

L L
W r r p

r rχ χ
χ χ

ωγ χ χ ωγ χ ζ φ
⎡ ⎤⎛ ⎞

= − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(18) 

 
( ) ( )

( ){ }
( )

2

3
6

3
3

1 exp 2 tan cos
3
exp tan sin sin

    , ,

W r

r p

χ

χ

φ ζ χ ζ
ωγ

φ ζ χ ζ χ

ωγ χ ζ φ

⎛ ⎞− ×⎡ ⎤⎜ ⎣ ⎦ ⎟
= ⎜ ⎟

⎜ ⎟− −⎡ ⎤⎣ ⎦⎝ ⎠
=   

 (19) 

 
Equating the rate of external work (Wγ ) to the rate of internal 

energy dissipation ( dW ) gives 
 

 dW Wγ =           (20) 

 ( )3 2
1 2 3 4 5 6 dr f f f f f f c r fχ χωγ ω− − − + + =    (21) 

 
Dividing by ω and 2rχ and rearranging the stability factor,

M C
HN
c

γ
− = for Mohr-Coulomb failure criterion is obtained as 

 

 
( )

( ){ }
1 2 3 4 5 6

, ,

exp tan sin sin

M C

d

HN g
c

f

f f f f f f

γ χ ζ ν

φ ν χ ν χ

− = = =

× − −⎡ ⎤⎣ ⎦
− − − + +

           (22) 

B. Limit Analysis for Hoek-Brown Failure Criterion  
Drescher & Christopoulos [15] first proposed a linear failure 

surface which is a tangent to the actual non-linear failure 
surface to get an upper bound solution. Meanwhile, the same 
“tangent line method” was employed by Collins et al. [8] to 
linearize a non-linear Hoek-Brown failure criterion. Likewise, 
Yang et al. [9] introduced the same method as Collins et al. [8] 
but more complicated conditions like sophisticated geometry 
(e.g., inclined slope upper surface), different strength 
parameters (e.g., n for the generalized H-B failure criterion) 
and pore pressure distribution are considered.  

Considering the generalized Hoek-Brown failure criterion, 
Yang et al. [9] proposed a tangential technique to obtain a 

revised stability factor H B n
c

HN
s
γ

σ− = , with n
cs σ  the uniaxial 

compressive strength of the rock which is used in the definition 
of the stability factor H BN − instead of c . 

The tangential line to the H-B failure criterion is given as 
 

 tan t tcτ σ ϕ= +                                       (23) 
 

where τ  and σ are the shear and normal stress, tc is the 
intercept of the tangential line to τ -axes in the ( ),σ τ stress 

space, and tϕ is an angle of the tangential line at the point 
considered to the horizontal line (See Fig. 3.). 
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Fig. 3 A tangential line for a non-linear failure criterion 

 
According to Yang et al. [9], τ andσ  are determined by the 

following two equations 
 

 
( ) ( )/ 1
1 sincos

2 2sin

n n
tt

c t

mn ϕϕτ
σ ϕ

−
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦    

 (24) 

 
( ) ( )1/ 1
1 sinsin1

2sin

n
tt

c t

mn s
m mn m

ϕϕσ
σ ϕ

−
−⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦   
 (25) 

 
From (24) and (25), tc  is found by 

 

 

( ) ( )

( ) ( )

/ 1

1/ 1

1 sincos
2 2sin

1 sintan sin
1 tan

2sin

n n
tt t

c t

n
tt t

t
t

mnc

mn s
m n m

ϕϕ
σ ϕ

ϕϕ ϕ
ϕ

ϕ

−

−

−⎡ ⎤
= −⎢ ⎥

⎣ ⎦

−⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦  

 (26) 

 
For the material following the original H-B failure criterion 

when 0.5n = , (26) can be simplified in the form 
 

 
( )21 sin

tan
16sin cos

tt
t

c t t

mc s
m

ϕ
ϕ

σ ϕ ϕ
−

= +
    

 (27) 

 
Compared with (22), the revised stability factor for H-B 

failure criterion is defined as 
 

( ) ( ) ( ) ( )

( )

1 2 3 4 5 6

/ 1 1/ 1
1 sin 1 sincos tan sin

1
2 2sin 2sin

tan

exp tan
                            

t t
H B M Cn n n

tc c c

d

w

n n n
t tt t t

t t

t

t

c cH HN N
cs s s

f
f f f f f f p

mn mn
m n

s
m

γ γ
σ σ σ

ϕ ϕϕ ϕ ϕ
ϕ ϕ

ϕ

φ ν χ

− −

− −

= = ⋅ = =

×
− − − + + +

⎧ ⎫− −⎡ ⎤ ⎡ ⎤⎛ ⎞⎪ ⎪− +⎢ ⎥ ⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦ ⎣ ⎦ ×⎨ ⎬
⎪ ⎪

+⎪ ⎪⎩ ⎭
−⎡ sin sin

ns
ν χ−⎤⎣ ⎦

(28) 

 

The minimum value of the function ( ), , , tf χ υ ζ ϕ was found 
by evaluating repeatedly the function over the four variables

, ,χ υ ζ and tϕ  in the range of values of engineering interest. 

IV. RESULTS 

A. Tension Cracks of Known Depth  
Cracks of known depth will be treated first. In Fig. 4, for a 

specific H-B limestone slope of 7.3m = and 1s = , the values of 
stability factor H BN − against the dimensionless crack depth 

/ Hδ  for different inclinations (from 45° to 90°) are shown. A 
minimum value of minN for each inclination (from 45° to 80°) 
can be detected and its corresponding crack depth is minδ , 
beyond which the crack depth no longer affects the stability of 
the slope [4] and H BN − remains constant for minδ δ> . It is 
important to note minδ deepens with the growing of each 
inclination. When the slope inclination β equals 90°, the curve 
shows a monotonic decreasing trend with a minimum minN at

/ 1Hδ = . 
It is necessary to learn how much effect (the slope becomes 

less stable) the calculations will get when a crack appears 
compared with the intact condition. The influence is defined as 
the percentage of decrease in the stability factor and it is 
expressed as ( ),min int1 / 100%crackN N− × , with ,mincrackN the most 

critical/minimum value of the stability factor when a crack 
emerges. 

 

 
Fig. 4 Stability factor against crack depth for various inclinations 

( 7.3: limestone, 1m s= = ) 
 

In Fig. 5, for the limestone slopes, the percentage climbs 
with the increasing inclination. It can be interpreted that for a 
H-B slope with high inclination, the presence of a crack has a 
greater impact on the stability of rock slopes. For instance, 
there is an almost 20% drop of the stability factor for a cracked 
H-B slope of 80β = ° and nearly 50% for the case of 80β = ° . 

 

 
Fig. 5 Percentage of decrease in the stability factor against slope 

inclinations (Limestone slopes: 7.3, 1m s= = ) 
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B. Tension Cracks of Known Location  
Next, cracks of known location, measured as the horizontal 

distance x from the slope toe with unspecified depth, will be 
addressed. In Fig. 6, the curves of stability factors H BN −  
against different /x H are plotted. intN is defined as the value 
of the stability factor for an intact slope. A certain range exists 
between 1x and 2x where a cracked slope of x x  is less 
stable than an intact one. And the range is defined as the zone of 
influence. Within this range, the minimum value of the stability 
factor min

xN provides the most critical mechanism for any given 
horizontal distance, which must coincide with the minimum of 

minN δ when different assumed δ  is considered (see Fig. 6 (c)).  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6 Stability factor against horizontal distance from slope toe for a 
H-B slope of 7.3 : limestone, 1cm s= =  (a) Various inclinations. (b)

45β = ° . (c) Curves meet at their minimum min min
xN N δ= . 

C. Tension Cracks of Unspecified Depth and Location 
For the most common circumstance, when there is no 

information about the depth and the location of cracks, in order 

to search for the most critical upper bound solution, the stability 
factor H BN − is minimized over all possible χ ,ν , ζ and tφ
without the constraints such as (9) and (10). In Fig. 7, it is quite 
apparent that with the increase of the slope inclination, the 
values of the stability factors drop significantly.  

 

 
Fig. 7 Stability factor N against slope inclination,

7.3: limestone, 1m s= =  
 

In practice, the generalized H-B failure criterion accounts for 
the variability of natural rock mass and the difference of 
fractured degree with n as a parameter in (2). The exponent, n , 
varies from 0.5 to 0.7. Sometimes the upper slope has an angle 

0α ≠  (see Fig. 10 in Appendix II), which complicates the 
solution of the stability factors. Table I gives the most critical 
values of the stability factors ,mincrackN for cracked slopes with 
the slope inclination β varying from 30° to 90°, and α being 
equal to 5°, 10° and15°.  

From Table I, it is found that the parameter α has little 
influence on the stability factors. Fig. 8 shows the effect of the 
exponent n (ranging from 0.5 to 0.7) on the stability factors for 
limestone slopes with 7.3m = , 1s = and 5α = °  . The stability 
factors .mincrackN increase with n .  

 
TABLE I 

 THE MOST CRITICAL STABILITY FACTORS .mincrackN FOR LIMESTONE ROCK (
7.3, 1m s= = ) WITH VARIOUS ,n α AND β  

Slope inclination β° 
n α 30° 40° 50° 60° 70° 80° 90° 

0.50 5 21.89 13.41 9.65 7.39 5.74 4.33 2.88 
10 21.71 13.35 9.62 7.36 5.70 4.28 2.83 
15 21.02 13.50 9.96 7.71 6.01 4.52 3.00 

0.55 5 31.66 17.61 12.15 9.08 6.94 5.17 3.40 
10 31.49 17.58 12.13 9.06 6.90 5.11 3.34 
15 30.75 17.95 12.70 9.60 7.35 5.46 3.57 

0.60 5 49.42 24.34 16.00 11.64 8.74 6.43 4.18 
10 49.22 24.33 15.98 11.62 8.69 6.35 4.09 
15 48.35 24.14 15.89 11.54 8.60 6.25 4.01 

0.65 5 85.89 38.17 24.42 17.52 13.02 9.51 6.15 
10 85.63 38.17 24.40 17.48 12.96 9.40 6.02 
15 84.61 37.92 24.28 17.37 12.83 9.26 5.90 

0.70 5 175.25 64.28 38.66 26.90 19.61 14.12 8.65 
10 175.20 64.34 38.67 26.87 19.52 13.95 8.83 
15 174.29 64.02 38.53 26.73 19.35 13.75 8.65 
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Fig. 8 Effect of exponent n on the stability factors criticalN ,

7.3, 1, 5 .m s α= = = °  

V. CONCLUSIONS 
The kinematic approach of limit analysis and the tangent 

technique were applied to investigate the stability of rock 
slopes subjected to tension cracks with the rock obeying the 
generalized Hoek-Brown failure criterion. Three different 
problems were considered: (1) slopes subject to tension cracks 
of known depth that could take place anywhere in the slope; (2) 
slopes subject to tension cracks of known location but unknown 
depth; (3) slopes subject to tension cracks of any possible 
location and depth. The results can be summarized as follows: 
1. Compared with intact cases, rock slopes with cracks can 

suffer a nearly up to 50% drop in stability factor. 
2. There exists two zones in the slopes, one where the slope 

stability is unaffected by the presence of tension cracks and 
the other one, where the slope stability is affected, i.e. the 
stability factor of the slope reduces in comparison with the 
case of slope without tension cracks. 

APPENDIX I: FAILURE LINE PASSING BELOW SLOPE TOE 
In this case (see Fig. 9), the calculation of the rate of external 

work for the logarithmic spiral region E-F-D changes. Equation 
(7) becomes 

 

 

( ) ( ) ( )
1

sin sin
exp tan

sin sin
L rχ

χ β υ β
φ υ χ

β β
′ ′+ +⎧ ⎫⎪ ⎪= − −⎡ ⎤⎨ ⎬⎣ ⎦′ ′⎪ ⎪⎩ ⎭    (29) 

 
with β ′ as indicated in Fig. 9. Therefore, although 2f  and 3f
remain formally identical, their values change because of(29). 

An extra term 9W , representing the rate of external work of 
region D-E-G, must also be added, giving  

 

 

( )

( )

( )

2

3
9

3
9

1 cot cot
2

1cos cot cot
3

    , , , ,

HW r
r

L H
r r

r f

χ
χ

χ χ

χ

ωγ β β

χ β β

ωγ χ υ φ β β

⎛ ⎞
′= − ×⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤

′− − +⎢ ⎥
⎢ ⎥⎣ ⎦

′=     
 (30) 

 

 
Fig. 9 Failure mechanism passing below slope toe 

APPENDIX II: NON-HORIZONTAL UPPER SLOPE ( 0α ≠ ). 
The case of 0α ≠  is illustrated in Fig. 10. In the following, 

only the equations that assume a different expression from the 
equations illustrated in the paper for a horizontal upper slope (

0α = ) are shown. 
Equation (5) becomes 

 
( ){ }exp tan sin sinH rχ φ υ χ υ χ= − −⎡ ⎤⎣ ⎦     (31) 

 
Equation (6) becomes 

 
( ){ }exp tan sin sinrχδ φ ζ χ ζ χ= − −⎡ ⎤⎣ ⎦     (32) 

 
Equation (7) becomes  

 
( )
( ) ( ) ( ) ( )

( ) ( ) ( )1

sin sin
exp tan sin sin

sin sin sin
L rχ

υ χ υ β
φ υ χ υ α χ α

υ α υ α β α
⎧ ⎫− +⎪ ⎪= − ⎡ − ⎤ × + − +⎨ ⎬⎣ ⎦+ + −⎪ ⎪⎩ ⎭(33) 

 
Equation (8) becomes 

 
( ){ }2 cos exp tan cosL rχ χ φ ζ χ ζ= − −⎡ ⎤⎣ ⎦    (34) 

 
Equation (15) becomes 

( )3 31 1
2 2

1 sin 2cos , , ,
6

L L
W r r f

r rχ χ
χ χ

ωγ χ χ ωγ χ υ β φ
⎡ ⎤⎛ ⎞

= − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦   (35) 
 
Equation (16) becomes 

 

( ) ( )

( )

( )

1

3
3

1

3
3

1 exp tan sin sin
6

cos cos exp tan

    , , ,

L
r

W r
L
r

r f

χ

χ

χ

χ

φ υ χ υ χ υ

ωγ

χ υ φ υ χ

ωγ χ υ β φ

⎡ ⎤⎡ ⎤
− − −⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎢ ⎥⎣ ⎦= ⎢ ⎥
⎧ ⎫⎢ ⎪ ⎪ ⎥× − + −⎡ ⎤⎨ ⎬⎣ ⎦⎢ ⎥
⎪ ⎪⎩ ⎭⎣ ⎦

=  

(36) 

 
Equation (19) becomes 

 ( ) ( ) ( ){ }
( )

23
6

3
3

1 exp 2 tan cos exp tan sin sin
3

    , ,

W r

r p

χ

χ

ωγ φ ζ χ ζ φ ζ χ ζ χ

ωγ χ ζ φ

⎛ ⎞= − × − −⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
=

(37) 
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Equation (28) becomes 

 ( )
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Equation (9) becomes 

 
( ) ( )

( ) ( ) ( )
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exp tan sin
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Fig. 10 Inclined slope upper surface ( 0α ≠ ) 
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