
 

 

  
Abstract—This paper presents a linear stability analysis of 

natural convection in a horizontal layer of a viscoelastic 

nanofluid. The Oldroyd B model was utilized to describe the 

rheological behavior of a viscoelastic nanofluid. The model 

used for the nanofluid incorporated the effects of Brownian 

motion and thermophoresis. The onset criterion for stationary 

and oscillatory convection was derived analytically. The effects 

of the Deborah number, retardation parameters, concentration 

Rayleigh number, Prandtl number, and Lewis number on the 

stability of the system were investigated. Results indicated that 

there was competition among the processes of thermophoresis, 

Brownian diffusion, and viscoelasticity which caused 

oscillatory rather than stationary convection to occur. 

Oscillatory instability is possible with both bottom- and 

top-heavy nanoparticle distributions. Regimes of stationary and 

oscillatory convection for various parameters were derived and 

are discussed in detail. 

Keywords—instability, viscoelastic, nanofluids, oscillatory, 

Brownian, thermophoresis 

I. INTRODUCTION 

HE term “nanofluid” was coined by Choi [1] to refer to a 

fluid containing a dispersion of nanoparticles. 

Characteristic features of nanofluids are the formation of 

very stable colloidal systems with very little settling and 

anomalous enhancement of the thermal conductivity compared 

to the base fluid [2, 3]. Buongiorno [4] focused on heat transfer 

enhancement of nanofluids in convective situations. He 

concluded that in the absence of turbulent effects, only 

Brownian diffusion and thermophoresis are important slip 

mechanisms in nanofluids. Based on this finding, Buongiorno 

[4] wrote down conservation equations of a non-homogeneous 

equilibrium model of nanofluids for mass, momentum, and heat 

transport. The onset of convection of the Benard problem of 

pure nanofluids and nanofluid-saturated layers based on 

Buongiorno's model has attracted much interest in the past 3 

years. The onset of a nanofluid layer was studied by Tzou [5,6] 

and Nield and Kuznetsov [7]. Convection of non-Newtonian 

fluids in a porous medium is of considerable importance in 

several applied fields such as oil recovery, food processing, and 

the spread of contaminants in the environment, and in various 

processes in the chemical and materials industry. The onset of 

thermal convection in a viscoelastic fluid was studied by many 

authors [8-14]. Since elastic behavior is inherent in 

non-Newtonian fluids, oscillatory instability can set in before a 

stationary mode is achieved. It is commonly believed that 

oscillatory convection is not possible in viscoelastic fluids 

under realistic experimental conditions [13]. However, 

experiments with a DNA suspension showed that convection 
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patterns take the form of spatially localized standing and 

traveling waves which exhibit small amplitudes and extremely 

long oscillation periods [15]. Those experiments triggered new 

interest in convection by applying binary aspects to viscoelastic 

fluids. Rayleigh-Benard convection in binary viscoelastic fluids 

was studied by some researchers [16-21]. Results show that 

there is competition among the processes of thermal diffusion, 

solute diffusion, and viscoelasticity that causes convection to set 

in through an oscillatory rather than a stationary mode. Results 

of convection instability in nanofluids indicate that both 

Brownian diffusion and thermophoresis give rise to 

cross-diffusion terms that are in some ways analogous to the 

familiar Soret and Dufour cross-diffusion terms that arise in 

binary fluids [7,8]. To the author's knowledge, there is only one 

study on convection instability of non-Newtonian nanofluids. 

Nield [22] briefly discussed convection instability in a porous 

medium saturated by a non-Newtonian nanofluid of the power 

law type. We are unaware of any publication discussing the 

effect of fluid viscoelasticity on the oscillatory instability of 

nanofluids. In this present work, the oscillatory instability of a 

viscoelastic nanofluid layer was studied. Our objective in the 

present work was to study how the onset criterion for oscillatory 

convection is affected by interactions among Brownian 

diffusion, thermophoretic diffusion, and viscoelasticity, and 

how is it related to the oscillatory instability of a binary 

viscoelastic base fluid. The Oldroyd-B fluid model was 

employed to describe the rheological behavior of a viscoelastic 

nanofluid. In order to assess the effects of viscoelastic 

parameters through analytical expressions, free-free boundary 

conditions were used in the first instance. 

II.  MATHEMATICAL FORMULATION 

Conservation equations for a viscoelastic nanofluid layer;  

We consider an infinite horizontal layer of a viscoelastic 

nanofluid subjected to a vertical temperature gradient, confined 

between the plane z=0 and z=d. According to the work of 

Buongiorno [4], the momentum equation for a nanofluid is of 

the same form as that of a pure fluid. The viscoelastic fluid of 

the Oldroyd type was used to model the momentum equation. 

We assumed that when the Boussinesq approximation is 

adopted, the basic governing equations are: 

 * 0∇ =q� , (1) 

*
* * * 2 *

1 0 2* * *
1 1p

t t t
λ ρ ρ µ λ

  ∂ ∂ ∂   + + ∇ + ∇ − = + ∇      ∂ ∂ ∂     

q
q q g q� ,(2) 

*
* * 2 * * * * * *

*
( ) ( ) [ ( / ) ]

uf p B T

T
c T k T c D T D T T T

t
ρ ρ φ

 ∂
+ ∇ = ∇ + ∇ ∇ + ∇ ∇ ∂ 
q � � � (3) 

  
*

* * 2 * *

* *

u

T
B

D
D T

t T

φ
φ φ

∂
+ ∇ = ∇ + ∇

∂
q � , (4) 

 
0{ (1 ) [1 ( )]}p f uT Tρ φρ φ ρ β≅ + − − −g g ; (5) 
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where 1λ  is the stress relaxation time, 2λ  is the strain 

retardation time, *
q  is the velocity vector, *p  is the hydrostatic 

pressure, g  is the gravitation acceleration vector, 
BD  is the 

Brownian diffusion coefficient, 
T
D  is the thermophoretic 

diffusion coefficient, and φ  is the nanoparticle volume fraction 

in the nanofluid. Notice that 1 2λ λ>  and that when 2 0λ = , we 

recover the Maxwell viscoelastic model; while for 1 2λ λ= , the 

model reduces to that of a Newtonian nanofluid. It should be 

noted that in writing down Eqs. (2) and (3), we assumed that the 

spatial variations in µ  and k are negligible. 

 We assumed that the temperature and volumetric fraction of 

the nanoparticles are constant at the boundaries. Thus the 

boundary conditions are: 

 
2 *

* * * * * *

0*2
0, 0, , 0l

w
w T T at z

z
φ φ

∂
= = = = =

∂
 (6) 

 
2 *

* * * * * *

1*2
0, 0, ,u

w
w T T at z d

z
φ φ

∂
= = = = =

∂
. (7) 

A derivation of the hydrodynamic boundary conditions can be 

found in [23], for example. The validity of the boundary 

conditions of nanoparticle volume fractions (6) and (7) are 

discussed in [7]. 

We introduce the dimensionless variables as follows: 

 

( )* * * * 2

* * 2

* * * * * * * *

0 1 0

( , , ) , , / , / ,

/ , / ,

( ) /( ), ( ) /( )

f

f f

u l u

x y z x y z d t t d

d p p d

T T T T T

α

α µα

φ φ φ φ φ

= =

= =

= − − = − −

q q . (8) 

Then Eqs. (1)~(4) take the form: 

 0∇ =q� , (9) 

 
1

2

2

1
1

Pr

1

M Np R k RaTk R k
t t

t

λ φ

λ

 ∂ ∂   + + ∇ + ∇ + − +    ∂ ∂    
∂ = + ∇ ∂ 

q
q q

q

r r r
�

, (10) 

 2 B A BT N N N
T T T T T

t Le Le
φ

∂
+ ∇ = ∇ + ∇ ∇ + ∇ ∇

∂
q� � � ,  (11) 

 2 21 AN T
t Le Le

φ
φ φ

∂
+ ∇ = ∇ + ∇

∂
q� ,  (12) 

 

 

with the dimensionless boundary conditions of 

 
2

2
0, 0, 1, 0 0

w
w T at z

z
φ

∂
= = = = =

∂
 (13) 

 
2

2
0, 0, 0, 1 1

w
w T at z

z
φ

∂
= = = = =

∂
, (14) 

where the nondimensional parameters are  

Darcy-Prandtl number,  Pr
f

µ
ρα

= ,  (15) 

Lewis number, f

B

Le
D

α
= , (16) 

thermal Darcy-Rayleigh number,
3 * *

0 ( )f l u

f

g d T T
Ra

ρ β

µα

−
= ,  (17) 

basic density Rayleigh number,
3

0 0 0[ (1 )]p f

M

f

gd
R

ρ φ ρ φ

µα

+ −
= , (18) 

concentration Rayleigh number,
* * 3

0 1 0( )( )p f

N

f

gd
R

ρ ρ φ φ

µα

− −
= , (19) 

Deborah number,  1

1 2

f

d

λα
λ = ,     (20) 

retardation parameter, 2

2 2

f

d

λ α
λ = , (21) 

modified diffusivity ratio, 
* *

* *

1 0

( )

( )

T l u
A

B u

D T T
N

D T φ φ
−

=
−

, and  (22) 

modified particle-density increment; * *

1 0

( )
( )

( )

p

B

f

c
N

c

ρ
φ φ

ρ
= − . (23) 

In the spirit of the Oberbeck-Boussinesq approximation, Eq. 

(11) was linearized by neglecting a term proportional to the 

product of φ  and T . This is valid in the case of small 

temperature gradients in a dilute suspension of nanoparticles. 

 

Basic solutions 

The basic state was assumed to be quiescent and is given 

by 

 0, ( ), ( ), ( )b b bu v w T T z z p p zφ φ= = = = = = . (24) 

The basic states of the temperature and nanoparticle volume 

fraction satisfy the equations 

 
22

2
0b B b b A B bd T N d dT N N dT

dz Le dz dz Le dz

φ  
+ + = 

 
 and (25) 

 
2 2

2 2
0b b

A

d d T
N

dz dz

φ
+ = . (26) 

Using boundary conditions in Eqs. (13) and (14), Eq. (26) can 

be integrated to give 

 (1 )b A b A AN T N z Nφ = − + − + . (27) 

Substituting this into Eq. (25) gives 

 
2

2

(1 )
0b A B bd T N N dT

dz Le dz

−
+ = . (28) 

The solution of Eq. (28) satisfying boundary conditions Eq. (13) 

and (14) is 

 
(1 ) (1 ) /

(1 ) /

1

1

A B

A B

N N z Le

b N N Le

e
T

e

− − −

− −

−
=

−
. (29) 

The basic solution of bφ  can easily be obtained by substituting 

this into Eq. (26). According to Buongiorno [4], Nield and 

Kuznetsov [7,8] discussed the exponents in Eq. (29) and found 

that they are small. Hence, to a good approximation, one has 

 1bT z= −  (30) 

and so 

 
b zφ = . (31) 
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Perturbed state 

 To study the stability of the system, we superimpose 

infinitesimal perturbations onto the basic state, which are of the 

forms 

 0 ', ', ', 'b b bT T T p p pφ φ φ= + = + = + = +q q . (32) 

Using Eq. (32) in Eqs. (9)~(12) and the basic state solutions, 

and neglecting the nonlinear terms, we obtain the linearized 

equations governing infinitesimal perturbations in the form: 

 ' 0∇ =q� , (33) 

2

1 2

1 '
1 ' ' ' 1 '

Pr
Np RaT k R k

t t t
λ φ λ

∂ ∂ ∂    + + ∇ − + = + ∇    ∂ ∂ ∂    

q
q

r r
 (34) 

 2' ' ' 2 '
' ' B A BT N T N N T
w T

t Le z z Le z

φ∂ ∂ ∂ ∂ − = ∇ + − − ∂ ∂ ∂ ∂ 
, and (35) 

 2 2' 1
' ' '

'

ANw T
t Le Le

φ
φ

∂
+ = ∇ + ∇

∂
. (36) 

Eliminating 'p  by operating a curl twice on it, one has 

 
( )2 2 2

1 1 1

4

2

1
1 ' ' '

Pr

1 '

Nw Ra T R
t t

w
t

λ φ

λ

∂ ∂   + ∇ − ∇ + ∇  ∂ ∂   
∂ 

= + ∇ ∂ 

; (37) 

where 2 2 2 2 2

1 / /x y∇ = ∂ ∂ + ∂ ∂ is the two-dimensional Laplacian 

operator on the horizontal plane. The boundary conditions for 

the infinitesimal perturbations are given by 

 
2

2

'
' 0, 0, ' 1, ' 0 0

w
w T at z

z
φ

∂
= = = = =

∂
 and (38) 

 
2

2

'
' 0, 0, ' 0, ' 1 1

w
w T at z

z
φ

∂
= = = = =

∂
. (39) 

III. LINEAR STABILITY ANALYSIS 

The differential Eqs. (35)~(37) and boundary conditions (38) 

and (39) constitute a linear boundary-value problem that can be 

solved using the method of normal modes in the form 

 
' ( )

' ( ) exp[ ( ) ]

' ( )

w W z

T z i lx my t

z

ω
φ

   
   = Θ + +   
   Φ   

; (40) 

where l and m are the wavenumber in the x- and y-directions and 

ω  is the growth rate. Substituting Eq. (40) into Eqs. 35)~(37) 

one has 

 
2 2 2 2

1

2 2 2

2

(1 ) ( )
Pr

(1 )( )

nD a W Raa R a

D a W

ω
λ ω

λ ω

 + − + Θ − Φ  

= + −

, (41) 

 2 22
0B A B BN N N N

W D D D a D
Le Le Le

ω + − + − − Θ + Φ = 
 

, and(42) 

 2 2 2 21
( ) ( ) 0ANW D a D a

Le Le
ω − − Θ − − − Φ = 

 
, (43) 

with boundary conditions 

 20, 0, 0, 0 0W D W at z= = Θ = Φ = =  and (44) 

 2
0, 0, 0, 0 1W D W at z= = Θ = Φ = = ; (45) 

where 2 2 2a l m= +  is the horizontal wavenumber and /D d dz= . 

 We assume the solution to ,W Θ and Φ  is in the form 

 0 0 0sin , sin , sinW W z z zπ π π= Θ = Θ Φ = Φ  (46) 

which satisfy boundary conditions (44) and (45). Substituting 

Eq. (46) into Eqs. (41)~(43), multiplying the resulting equations 

by sin zπ , and integrating each equation from 0z =  to 

1z =  and performing some integration by parts, one obtains 

the following matrix equation: 

 

2 2

11 0

2

0

1 2 1 2

0

0

1 0 0

1 0

N

A

M Raa R a W

N Le Le

δ ω
δ δ ω− −

 −    
     − + Θ =     
     + Φ    

; (47) 

where 2 2 2aδ π= +  is the total wavenumber, and 

  2 2

11 2 1{ / Pr [(1 ) /(1 )] }M ω λ ω λ ω δ δ= + + + . (48) 

 The nontrivial solution of the above matrix requires that 

 
( )

2
2 22

2

1

1 2

1 2

(1 )

Pr (1 )

( )A
N

Ra
a

Le N Le
R

Le

δ ω λ ω
ω δ δ

λ ω

ω δ
ω δ

−

−

 +
= + + 

+ 

+ +
−

+

. (49) 

Setting iiω ω=  in Eq. (49) and clearing the complex quantities 

from the denominator, one obtains 

 
1 2iRa iω= ∆ + ∆ ; (50) 

where 

 

2 2 2 2
4 21 2 1 2

1 2 2 2 2 2

1 1

2 1 4 1

2 2 4

1 ( )

1 1 Pr

(1 )

i i i

i i

i A
N

i

a

Le N Le
R

Le

δ λ λ ω ω λ λ ω
δ δ

λ ω λ ω

ω δ
ω δ

− −

−

 + −
∆ = + − 

+ + 

+ +
−

+

  and (51) 

 

4 2 2

1 1 2 1
2 2 2 2 2 2

1 1

2 1 1

2 2 4

1 1 ( )

1 Pr 1

[1 ]

i

i i

A
N

i

a

N Le Le
R

Le

δ λ λ ω δ λ λ
λ ω λ ω

δ
ω δ

− −

−

 + −
∆ = + + 

+ + 

+ −
+

+

. (52) 

Since Ra  is a physical quantity, it must be a real value. Hence, 

it follows from Eq. (50) that either 0iω =  (exchange stability, 

steady onset) or 
2 0∆ =  ( 0iω ≠  overstability, oscillatory 

onset). 

 

Stationary convection 

Steady onset corresponds to 0iω = , and steady convection 

occurs at 

 ( )
6

2

S

A NRa N Le R
a

δ
= − + . (53) 

The critical wave number obtained by minimizing Ra  with 

respect to a, i.e., satisfying / 0Ra a∂ ∂ = , is 

 / 2ca π= . (54) 

The corresponding critical thermal Rayleigh number for steady 

onset is 
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 ( )
427

4

S

C A NRa N Le R
π

= − + . (55) 

It should be noted that the expression for S

CRa  is independent 

of viscoelastic parameters and coincides with those of a 

Newtonian nanofluid problem. 

Oscillatory convection 

For oscillatory onset, 2 0∆ =  and 0iω ≠ , which gives a 

dispersion relation of the form 

 2 2 2

1 2 3( ) ( ) 0i ia a aω ω+ + = ; (56) 

where 

 2

1 1 2 1( Pr )a λ λ λ δ= + , (57)  

2 2 4 2 2 4 2

2 1 2 1 2 1

2 2 1 1

1

[Pr(1 ) (1 ) Pr( ) ]

Pr (1 )A N

a Le Le

a N Le Le R

δ λ λ δ λ δ λ λ δ

λ

− −

− −

= + + + + −

+ + −
, and (58) 

 
6 2 2 8

3 2 1

2 1 1

(1 Pr) Pr( )

Pr(1 )A N

a Le Le

a N Le Le R

δ λ λ δ− −

− −

= + + −

+ + −
. (59) 

Then Eq. (53) with 2 0∆ =  gives 

 

2 2 2 2
4 21 2 1 2

2 2 2 2 2

1 1

2 1 4 1

2 2 4

1 ( )

1 1 Pr

(1 )

OSC i i i

i i

i A
N

i

Ra
a

Le N Le
R

Le

δ λ λ ω ω λ λ ω
δ δ

λ ω λ ω

ω δ
ω δ

− −

−

 + −
= + − 

+ + 

+ +
−

+

. (60) 

IV. RESULT 

Expression of the stationary critical thermal Rayleigh number 

is given by Eq. (55). The expression of the oscillatory thermal 

Rayleigh number is obtained analytically using Eq. (60). It 

should be noted that parameter BN  affects neither stationary nor 

oscillatory instability. The effect of BN  on instability in Eq. 

(42) is the first derivative of the temperature mode which is 

cancelled due to integration of orthogonal functions. As a result, 

the contributions of Brownian motion and thermophoresis in the 

thermal energy equation of instability disappear. Rather, 

Brownian motion and thermophoresis directly enter the 

equation expressing the conservation of nanoparticles to 

produce their effects. In this way, the temperature and particle 

density are coupled in a particular way in which the instability is 

almost purely a phenomenon due to buoyancy coupled with the 

conservation of nanoparticle motion. It is worth discussing the 

limiting case, 0AN = , which indicates the absence of a 

thermophoretic effect. At this limit, the problem reduces to 

double diffusive convection instability. The resultant equations 

are similar to those of double diffusive convection instability in 

viscoelastic fluid layers [21] and viscoelastic fluid-saturated 

porous media [24, 25]. A careful comparison between Eqs. 

(53)~(60) and the corresponding equations in the work of 

Malashetty and Swamy [21], which examined the onset of 

double diffusive convection in a viscoelastic base fluid, shows 

that they are exactly the same if we let 0AN =  and 
N SR Ra= − , 

where 
SRa  is the solute Rayleigh number defined in their work. 

The stationary critical thermal Rayleigh number was also found 

to be independent of the viscoelastic parameters and to be 

identical to those of a Newtonian nanofluid problem. The 

critical thermal Rayleigh number for oscillatory convection can 

be derived by numerically minimizing Eq. (60) with respect to 

the wavenumber, after substituting various values of physical 

parameters for 
2

iω  of Eq. (56) to determine their effects on the 

onset of oscillatory convection. According to Buongiorno [4] 

and Nield and Kuznetsov [7], for most nanofluids investigated, 

Lewis number, Le , is large of the order 2 310 10− , while the 

modified diffusivity ratio, AN , is no greater than about 10. In 

the following, we consider instability by taking values of Le  

and AN  within these ranges. 
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Fig. 1 Neutral curves for different values of (a) the Deborah number 

(
1λ ), (b) retardation parameter (

2λ ), (c) Prandtl number (Pr), (d) 

Lewis number ( Le ), (e) concentration Rayleigh number (
NR ), and (f) 

modified diffusivity ratio (
AN ). 

Figure 1 shows the neutral curves for different values of the 

Deborah number, stress retardation parameter, Prandtl number, 

Lewis number, concentration Rayleigh number, and modified 

diffusivity ratio. The effect of the Deborah number, 
1λ , is 

shown in Fig. 1a. The Deborah number is used in rheology to 

characterize how fluid a material is. It physically represents the 

ratio of the relaxation time to the thermal diffusion time. The 

smaller the Deborah number is, the more fluid the material 

appears. A large Deborah number means that the fluid cannot 

keep up with the deformation rate. In other words, the material 

will look more elastic than viscous, and responds more like a 

Hookian spring. Figure 1a shows that the oscillatory thermal 

Rayleigh number decreases with an increase in the Deborah 

number which indicates that the effect of the Deborah number is 

to advance the onset of convection in a viscoelastic nanofluid 

layer. Figure 1b shows the effect of the retardation parameter, 

2λ , on the neutral curves. It was found that an increase in the 

value of the retardation parameter increases the minimum 
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oscillatory Rayleigh number, indicating that it delays the onset 

of convection in a viscoelastic nanofluid layer. The effect of the 

Prandtl number on the oscillatory thermal Rayleigh number is 

shown in Fig. 1c. One can see that the oscillatory thermal 

Rayleigh number decreases with the increase in the Prandtl 

number, indicating that the Prandtl number advances the 

oscillatory onset of viscoelastic nanofluids. In Fig. 1d, the effect 

of the Lewis number on neutral curves is shown. It should be 

noted that the effect of the Lewis number on the oscillatory 

thermal Rayleigh number is very slight, while its effect on the 

stationary mode is substantial. The effect of the concentration 

Rayleigh number is shown in Fig. 1e. It can be seen in Fig. 1e 

that the oscillatory thermal Rayleigh number decreases with an 

increase in NR , which means that NR  enhances oscillatory 

convection. Figure 1f depicts the effect of a modified diffusivity 

ratio, 
AN , on the neutral curves. The modified diffusivity ratio 

represents the ratio of thermophoresis to Brownian diffusion of 

nanoparticles. It can be seen from Fig. 1f that the critical 

oscillatory thermal Rayleigh number decreases with an increase 

in 
AN , indicating that 

AN  advances oscillatory onset. 
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Fig. 2 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter (
2λ ) for different values of the Deborah 

number (
1λ ) and negative values of 

NR  and 
AN  

Variations in the critical thermal Rayleigh number with the 

strain retardation parameter for various parameters are shown in 

Figures 2~7. Figure 2 shows the effect of the Deborah number 

(
1λ ) on the critical thermal Rayleigh number. It can be seen in 

this figure that the oscillatory mode sets in before the stationary 

mode as 2 1λ λ≤  for negative values of NR  and AN  at the values 

given for other parameters. Note that a negative value of 
NR  

represents a bottom-heavy nanoparticle distribution. Note also 

that for a Oldroyd B type of viscoelastic fluid, values of the 

relaxation time and retardation time satisfy 
2 1λ λ≤ . As a result, 

for a typical viscoelastic nanofluid (with a large Lewis number), 

the oscillatory mode always sets in before the stationary mode 

for a bottom-heavy nanoparticle distribution at the given 

parameters values. Figure 3 shows the effect of the Deborah 

number on the critical thermal Rayleigh number for positive 

values of NR  and AN . Note that a positive value of NR  

represents a top-heavy nanoparticle distribution. For each 1λ , it 

is indicated in Fig. 3 that a critical strain retardation parameter 

(say 2

Cλ ) exists which divides the boundary of regimes between 

oscillatory and stationary convection. Initially convection 

begins in the form of the oscillatory mode. As the value of 
2λ  

reaches 2

Cλ , convection ceases to be oscillatory, and stationary 

convection occurs as the first bifurcation. The value of 2

Cλ  for 

each case depends on 
1λ  and the other parameters. As shown in 

Eq. (55), the critical stationary thermal Rayleigh number, S

CRa , 

is independent of the viscoelasticity parameters. Hence, as the 

value of 
2

λ  exceeds 2

Cλ , the curve is horizontal, and the critical 

thermal Rayleigh number is a constant value, which depends on 

,AN Le , and 
NR . 
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Fig. 3 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter ( 2λ ) for different values of the Deborah 

number ( 1λ ) and positive values of NR  and AN  
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Fig. 4 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter ( 2λ ) for different values of the Prandtl 

number 
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Fig. 5 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter (
2λ ) for different values of the Lewis 

number ( Le ) and Deborah number (
1λ ) 

Figure 4 shows the effect of the Prandtl number on the critical 

thermal Rayleigh number and 
2

Cλ  for fixed values of other 

parameters. It was found that 2

Cλ  increases with the Prandtl 

number, indicating an increase in the region of the oscillatory 

mode. The critical oscillatory thermal Rayleigh number, Osc

CRa , 

decreases with an increase in the Prandtl number, revealing that 

the oscillatory mode is more unstable as the Prandtl number 

increases. As discussed in Fig. 1d, the effect of the Lewis 

number on the critical oscillatory thermal Rayleigh number is 

very slight. However, the Lewis number does affect the critical 

stationary thermal Rayleigh number and 2

Cλ . The effects of the 

Lewis number on the critical thermal Rayleigh number and 
2

Cλ  

for positive 
NR  and various values of 

1λ  are shown in Figure 5. 

An increase in the Lewis number decreases 2

Cλ  and contracts 

the region of the oscillatory mode. In the oscillatory region, the 

critical thermal Rayleigh number depends only on 
1

λ  and 
2

λ , as 

the other parameters are specified. However, in the stationary 

region, the critical Rayleigh number decreases with an increase 

in the Lewis number when values of 
NR  are positive. 
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Fig. 6 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter (
2

λ ) for different values of the 

concentration Rayleigh number ( NR ) 

 

Figure 6 shows the effect of the concentration Rayleigh 

number, 
NR , on the critical thermal Rayleigh number for fixed 

values of parameters. The critical stationary thermal Rayleigh 

number, S

CRa , decreases with an increase in NR . The effect of 

decreasing 
NR  is to stabilize the stationary mode. Although 

NR  

significantly affects the stationary mode, its influence on the 

oscillatory mode is very slight for a typical viscoelastic 

nanofluid with a large Lewis number. However, 2

Cλ  decreases 

with an increase in the NR , which implies that an increasing NR  

will reduce the region of oscillatory instability. Note that a 

negative value of the NR  indicates a bottom-heavy nanoparticle 

distribution. For Newtonian nanofluids, it was found that 

oscillatory instability is possible only in the case of a 

bottom-heavy nanoparticle distribution. In Figure 6, cases with 

positive values of NR  correspond to top-heavy nanoparticle 

distributions. It can clearly be seen that there are regions of 

oscillatory instability in these cases. Figure 6 reveals that 

oscillatory instabilities are possible in both top- and 

bottom-heavy nanoparticle distributions of viscoelastic 

nanofluids. 
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Fig. 7 Variations in the critical thermal Rayleigh number with the 

strain retardation parameter (
2λ ) for different values of the modified 

diffusivity ratio (
AN ) 

 

Figure 7 displays the effect of a modified diffusivity ratio, 

AN , on the critical thermal Rayleigh number for both top- and 

bottom-heavy nanoparticle distributions. It was observed that 

with increasing values of 
AN , the critical stationary thermal 

Rayleigh number, S

CRa , decreases for top-heavy distributions, 

while it increases for bottom-heavy distributions. This indicates 

that the effect of increasing 
A
N  on the stationary mode is to 

stabilize bottom-heavy cases, while destabilizing top-heavy 

cases. It can also be seen in Fig. 7 that for a typical viscoelastic 

nanofluid with a large Lewis number, the effect of 
AN  on the 

oscillatory mode is very small. For top-heavy distributions, 
2

Cλ  

decreases with an increase in 
AN . 

V.  CONCLUSIONS 

The onset of convection in a viscoelastic nanofluid layer was 

studied using a linear instability analysis employing a model 

that incorporates the effects of Brownian motion, 

thermophoresis, and viscoelasticity. The onset criterion for 

stationary and oscillatory convection was derived analytically. 

Oscillatory instability is possible in both bottom- and top-heavy 

nanoparticle distributions. For a typical viscoelastic nanofluid 

with a large Lewis number, results indicated the dependence of 
Osc

CRa  on Le , 
NR , and 

AN  is very slight. However, Le , 
NR , 

and 
AN  do affect the region of the oscillatory mode and S

CRa . 
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