Search results for: microstructure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 243

Search results for: microstructure.

33 Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2

Authors: Lawrence I. Onyeji, Girish M. Kale, M. Bijan Kermani

Abstract:

Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.

Keywords: Carbon dioxide corrosion, corrosion behavior, micro-alloyed steel, microstructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
32 Continuous Flow Experimental Set-Up for Fouling Deposit Study

Authors: A. L. Ho, N. Ab. Aziz, F. S. Taip, M. N. Ibrahim

Abstract:

The study of the fouling deposition of pink guava juice (PGJ) is relatively new research compared to milk fouling deposit. In this work, a new experimental set-up was developed to imitate the fouling formation in heat exchanger, namely a continuous flow experimental set-up heat exchanger. The new experimental setup was operated under industrial pasteurization temperature of PGJ, which was at 93°C. While the flow rate and pasteurization period were based on the experimental capacity, which were 0.5 and 1 liter/min for the flow rate and the pasteurization period was set for 1 hour. Characterization of the fouling deposit was determined by using various methods. Microstructure of the deposits was carried out using ESEM. Proximate analyses were performed to determine the composition of moisture, fat, protein, fiber, ash and carbohydrate content. A study on the hardness and stickiness of the fouling deposit was done using a texture analyzer. The presence of seedstone in pink guava juice was also analyzed using a particle analyzer. The findings shown that seedstone from pink guava juice ranging from 168 to 200μm and carbohydrate was found to be a major composition (47.7% of fouling deposit consists of carbohydrate). Comparison between the hardness and stickiness of the deposits at two different flow rates showed that fouling deposits were harder and denser at higher flow rate. Findings from this work provide basis knowledge for further study on fouling and cleaning of PGJ.

Keywords: Pink guava juice, fouling deposit, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
31 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3385
30 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
29 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements

Authors: M. Linek

Abstract:

This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.

Keywords: Scanning electron microscope, computed tomography, cement concrete, airfield pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
28 An Experimentally Validated Thermo- Mechanical Finite Element Model for Friction Stir Welding in Carbon Steels

Authors: A. H. Kheireddine, A. A. Khalil, A. H. Ammouri, G. T. Kridli, R. F. Hamade

Abstract:

Solidification cracking and hydrogen cracking are some defects generated in the fusion welding of ultrahigh carbon steels. However, friction stir welding (FSW) of such steels, being a solid-state technique, has been demonstrated to alleviate such problems encountered in traditional welding. FSW include different process parameters that must be carefully defined prior processing. These parameters included but not restricted to: tool feed, tool RPM, tool geometry, tool tilt angle. These parameters form a key factor behind avoiding warm holes and voids behind the tool and in achieving a defect-free weld. More importantly, these parameters directly affect the microstructure of the weld and hence the final mechanical properties of weld. For that, 3D finite element (FE) thermo-mechanical model was developed using DEFORM 3D to simulate FSW of carbon steel. At points of interest in the joint, tracking is done for history of critical state variables such as temperature, stresses, and strain rates. Typical results found include the ability to simulate different weld zones. Simulations predictions were successfully compared to experimental FSW tests. It is believed that such a numerical model can be used to optimize FSW processing parameters to favor desirable defect free weld with better mechanical properties.

Keywords: Carbon Steels, DEFORM 3D, FEM, Friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
27 Effects of Corrosion on Reinforced Concrete Beams with Silica Fume and Polypropylene Fibre

Authors: S.Shanmugam, V.G. Srisanthi, S.Ramachandran

Abstract:

Reinforced concrete has good durability and excellent structural performance. But there are cases of early deterioration due to a number of factors, one prominent factor being corrosion of steel reinforcement. The process of corrosion sets in due to ingress of moisture, oxygen and other ingredients into the body of concrete, which is unsound, permeable and absorbent. Cracks due to structural and other causes such as creep, shrinkage, etc also allow ingress of moisture and other harmful ingredients and thus accelerate the rate of corrosion. There are several interactive factors both external and internal, which lead to corrosion of reinforcement and ultimately failure of structures. Suitable addition of mineral admixture like silica fume (SF) in concrete improves the strength and durability of concrete due to considerable improvement in the microstructure of concrete composites, especially at the transition zone. Secondary reinforcement in the form of fibre is added to concrete, which provides three dimensional random reinforcement in the entire mass of concrete. Reinforced concrete beams of size 0.1 m X 0.15 m and length 1m have been cast using M 35 grade of concrete. The beams after curing process were subjected to corrosion process by impressing an external Direct Current (Galvanostatic Method) for a period of 15 days under stressed and unstressed conditions. The corroded beams were tested by applying two point loads to determine the ultimate load carrying capacity and cracking pattern and the results of specimens were compared with that of the companion specimens. Gravimetric method is used to quantify corrosion that has occurred.

Keywords: Carbonation, Corrosion, Cracking, Spalling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
26 Surface Modification of Titanium Alloy with Laser Treatment

Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan

Abstract:

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
25 High Temperature Deformation Behavior of Cr-containing Superplastic Iron Aluminide

Authors: Seok Hong Min, Woo Young Jung, Tae Kwon Ha

Abstract:

Superplastic deformation and high temperature load relaxation behavior of coarse-grained iron aluminides with the composition of Fe-28 at.% Al have been investigated. A series of load relaxation and tensile tests were conducted at temperatures ranging from 600 to 850oC. The flow curves obtained from load relaxation tests were found to have a sigmoidal shape and to exhibit stress vs. strain rate data in a very wide strain rate range from 10-7/s to 10-2/s. Tensile tests have been conducted at various initial strain rates ranging from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was obtained at the initial strain rate of 3×10-5/s and the maximum strain rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy. Microstructure observation through the optical microscopy (OM) and the electron back-scattered diffraction (EBSD) technique has been carried out on the deformed specimens and it has revealed the evidences for grain boundary migration and grain refinement to occur during superplastic deformation, suggesting the dynamic recrystallization mechanism. The addition of Cr by the amount of 5 at.% appeared to deteriorate the superplasticity of the binary iron aluminide. By applying the internal variable theory of structural superplasticity, the addition of Cr has been revealed to lower the contribution of the frictional resistance to dislocation glide during high temperature deformation of the Fe3Al alloy.

Keywords: Iron aluminide (Fe3Al), large grain size, structural superplasticity, dynamic recrystallization, chromium (Cr).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
24 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: A. Nassef, S. Samy, W. H. El Garaihy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250°C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, Equal channel angular pressing, Grain refinement, Severe plastic deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
23 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
22 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
21 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146
20 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer

Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin

Abstract:

Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self curing agent (Super Absorbing Polymer – SAP) there by increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self curing will reduce the evaporation of water from concrete. Self curing will increase water retention capacity as compared to the conventional concrete. Proper self curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others.

Keywords: Compressive Strength, High strength Concrete Rapid chloride permeability, Super Absorbing Polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
19 Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)

Authors: A. Udayakumar, M. Rizvan Basha, M. Stalin, V.V Bhanu Prasad

Abstract:

Three dimensional non-Interlaced carbon fibre reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon interphase were fabricated using isothermal chemical vapor infiltration (ICVI) combined with polymer impregnation pyrolysis (PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to obtain silicon carbide matrix. Thermo gravimetric analysis (TGA), Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD) analysis were carried out on PSZ pyrolysed at different temperatures to understand the pyrolysis and obtaining the optimum pyrolysing condition to yield β-SiC phase. The density of the composites was 1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h with one intermediate polysilazane pre-ceramic PIP process. Mechanical properties of the composite materials were investigated under tensile, flexural, shear and impact loading. The values of tensile strength were 200 MPa at room temperature (RT) and 195 MPa at 500°C in air. The average RT flexural strength was 243 MPa. The lower flexural strength of these composites is because of the porosity. The fracture toughness obtained from single edge notched beam (SENB) technique was 39 MPa.m1/2. The work of fracture obtained from the load-displacement curve of SENB test was 22.8 kJ.m-2. The composites exhibited excellent impact resistance and the dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined from instrumented Charpy impact test. The shear strength of the composite was 93 MPa, which is significantly higher compared 2-D Cf/SiC composites. Microstructure evaluation of fracture surfaces revealed the signatures of fracture processes and showed good support for the higher toughness obtained.

Keywords: 3-D-Cf/SiC, charpy impact test, composites, dynamic fracture toughness, polysilazane, pyrocarbon, Interphase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
18 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex (x≤0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and mono-crystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. From this point of view, complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at room temperature. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers’ concentration 5.1014-1.1015cm-3. Microhardness was studied on Dynamic Ultra Micro hardness Tester DUH-201S with Berkovich indenter. Investigate samples are characterized with 0,5x0,5x(10-15)mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Dynamic mechanical characteristics decreasing trend is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Internal friction, microhardness, relaxation processes, shear modulus, Si-Ge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
17 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
16 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: Bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
15 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
14 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites

Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy

Abstract:

In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl  by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and  as cast hybrid composites.

Keywords: Beryl, graphene, heat treatment, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
13 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator

Authors: Phannee Saengkaew, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Sakuntam Sanorpim, Manop Tirarattanasompot, Somboon Rhianphumikarakit

Abstract:

We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.

Keywords: Human-hair analysis, XRD, SAXS, breast cancer, health-state indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
12 High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper, we used a high-quality anodization technique to make a colored wind chime with a nano-tube structure anodic film, which controls the length-to-diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by an anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on an aluminum alloy surface. The hard anodization film has high hardness, high insulation, high-temperature resistance, good corrosion resistance, colors, and mass production properties that can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also provides in-depth research and a detailed discussion of the related process of aluminum alloy surface hard anodizing, including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization include using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte and controlling the temperature, time, current density, and final voltage to obtain the anodic film. In the results of the experiments, the properties of the anodic film, including thickness, hardness, insulation, and corrosion characteristics, the microstructure of the anode film were measured, and the hard anodization efficiency was calculated. Thereby it can obtain different transmission speeds of sound in the aluminum rod. And, different audio sounds can present on the aluminum rod. Another feature of the present experiment result is the use of the anodizing method and dyeing method, laser engraving patterning and electrophoresis method to make good-quality colored aluminum wind chimes.

Keywords: Anodization, aluminum, wind chime, nano-tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82
11 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
10 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
9 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: Films, magnetron co-sputtering, photocatalysis, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
8 Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Authors: M. A. Ahmadi, O. Alidoust, I. Sadrinejad, M. Nayeri

Abstract:

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Keywords: Self compacting concrete (SCC), Rice husk ash(RHA), Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3680
7 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: Solid lubricant, sliding wear grey cast iron, zinc based metal matrix composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
6 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems

Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga

Abstract:

In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.  

Keywords: Car’s air–conditioning, microstructure, numerical modelling, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
5 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-Fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fullycrystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: Crystal orientation, electrostrictive strain, mechanical energy density, permittivity, relaxor ferroelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
4 Microstructure and Mechanical Characterization of Heat Treated Stir Cast Silica (Sea Sand) Reinforced 7XXX Al Alloy MMCs

Authors: S. S. Sharma, Jagannath K, P. R. Prabhu

Abstract:

Metal matrix composites consists of a metallic matrix combined with dispersed particulate phase as reinforcement. Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in 7XXX Al alloys that will ensure their use in significant quantities for the time to come. Particulate MMCs are of special interest owing to the low cost of their raw materials (primarily natural river sand here) and their ease of fabrication, making them suitable for applications requiring relatively high volume production. 7XXX Al alloys are precipitation hardenable and therefore amenable for thermomechanical treatment. Al–Zn alloys reinforced with particulate materials are used in aerospace industries in spite of the drawbacks of susceptibility to stress corrosion, poor wettability, poor weldability and poor fatigue resistance. The resistance offered by these particulates for the moving dislocations impart secondary hardening in turn contributes strain hardening. Cold deformation increases lattice defects, which in turn improves the properties of solution treated alloy. In view of this, six different Al–Zn–Mg alloy composites reinforced with silica (3 wt. % and 5 wt. %) are prepared by conventional semisolid synthesizing process. The cast alloys are solution treated and aged. The solution treated alloys are further severely cold rolled to enhance the properties. The hardness and strength values are analyzed and compared with silica free Al – Zn-Mg alloys. Precipitation hardening phenomena is accelerated due to the increased number of potential sites for precipitation. Higher peak hardness and lesser aging time are the characteristics of thermo mechanically treated samples. For obtaining maximum hardness, optimum number and volume of precipitate particles are required. The Al-5Zn-1Mg with 5% SiO2 alloy composite shows better result.

Keywords: Dislocation, hardness, matrix, thermomechanical, precipitation hardening, reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848