@article{(Open Science Index):https://publications.waset.org/pdf/10003330,
	  title     = {Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer},
	  author    = {Qing Liu and  Jean-Fabien Capsal and  Claude Richard},
	  country	= {},
	  institution	= {},
	  abstract     = {In this current contribution, authors are dedicated to
investigate influence of the crystal lamellae orientation on
electromechanical behaviors of relaxor ferroelectric Poly
(vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene)
(P(VDF-TrFE-CTFE)) films by control of polymer microstructure,
aiming to picture the full map of structure-property relationship. In
order to define their crystal orientation films, terpolymer films were
fabricated by solution-casting, stretching and hot-pressing process.
Differential scanning calorimetry, impedance analyzer, and tensile
strength techniques were employed to characterize crystallographic
parameters, dielectric permittivity, and elastic Young’s modulus
respectively. In addition, large electrical induced out-of-plane
electrostrictive strain was obtained by cantilever beam mode.
Consequently, as-casted pristine films exhibited surprisingly high
electrostrictive strain 0.1774% due to considerably small value of
elastic Young’s modulus although relatively low dielectric
permittivity. Such reasons contributed to large mechanical elastic
energy density. Instead, due to 2 folds increase of elastic Young’s
modulus and less than 50% augmentation of dielectric constant, fullycrystallized
film showed weak electrostrictive behavior and
mechanical energy density as well. And subjected to mechanical
stretching process, Film C exhibited stronger dielectric constant and
out-performed electrostrictive strain over Film B because edge-on
crystal lamellae orientation induced by uniaxially mechanical stretch.
Hot-press films were compared in term of cooling rate. Rather large
electrostrictive strain of 0.2788% for hot-pressed Film D in
quenching process was observed although its dielectric permittivity
equivalent to that of pristine as-casted Film A, showing highest
mechanical elastic energy density value of 359.5 J/m3. In hot-press
cooling process, dielectric permittivity of Film E saw values at 48.8
concomitant with ca.100% increase of Young’s modulus. Films with
intermediate mechanical energy density were obtained.
},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {9},
	  number    = {12},
	  year      = {2015},
	  pages     = {1489 - 1498},
	  ee        = {https://publications.waset.org/pdf/10003330},
	  url   	= {https://publications.waset.org/vol/108},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 108, 2015},
	}