Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 289

Search results for: Aluminum

289 Hydrogen Generation by Accelerating Aluminum Corrosion in Water with Alumina

Authors: J. Skrovan, A. Alfantazi, T. Troczynski

Abstract:

For relatively small particles of aluminum (<60 μm), a measurable percentage of the aluminum (>5%) is observed to corrode before passivation occurs at moderate temperatures (>50oC) in de-ionized water within one hour. Physical contact with alumina powder results in a significant increase in both the rate of corrosion and the extent of corrosion before passivation. Whereas the resulting release of hydrogen gas could be of commercial interest for portable hydrogen supply systems, the fundamental aspects of Al corrosion acceleration in presence of dispersed alumina particles are equally important. This paper investigates the effects of various amounts of alumina on the corrosion rate of aluminum powders in water and the effect of multiple additions of aluminum into a single reactor.

Keywords: Alumina, Aluminum, Corrosion, Hydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
288 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: Combination of aluminum honeycomb panel and rod latticed shell, dynamic performance, response spectrum analysis, seismic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
287 Friction Stir Welding of Aluminum Alloys: A Review

Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra

Abstract:

Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion welded aluminum joints are poor. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review the process parameters, microstructural evolution, and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.

Keywords: Aluminum alloys, Friction stir welding (FSW), Microstructure, Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4971
286 The Effect of Ageing Treatment of Aluminum Alloys for Fuselage Structure-Light Aircraft

Authors: Shwe Wut Hmon Aye, Kay Thi Lwin, Waing Waing Kay Khine Oo

Abstract:

As the material used for fuselage structure must possess low density, high strength to weight ratio, the selection of appropriate materials for fuselage structure is one of the most important tasks. Aluminum metal itself is soft and low in strength. It can be made stronger by giving proper combination of suitable alloy addition, mechanical treatment and thermal treatment. The usual thermal treatment given to aluminum alloys is called age-hardening or precipitation hardening. In this paper, the studies are carried out on 7075 aluminum alloy which is how to improve strength level for fuselage structure. The marked effect of the strength on the ternary alloy is clearly demonstrated at several ageing times and temperatures. It is concluded that aluminum-zinc-magnesium alloy can get the highest strength level in natural ageing.

Keywords: Aluminum alloy, ageing, heat treatment, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
285 Ultrasound Assisted Method to Increase the Aluminum Dissolve Rate from Acidified Water

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Aluminum salt that is generally presents as a solid phase in the water purification sludge (WPS) can be dissolved, recovering a liquid phase, by adding strong acid to the sludge solution. According to the reaction kinetics, when reactant is in the form of small particles with a large specific surface area, or when the reaction temperature is high, the quantity of dissolved aluminum salt or reaction rate, respectively are high. Therefore, in this investigation, water purification sludge (WPS) solution was treated with ultrasonic waves to break down the sludge, and different acids (1 N HCl and 1 N H2SO4) were used to acidify it. Acid dosages that yielded the solution pH of less than two were used. The results thus obtained indicate that the quantity of dissolved aluminum in H2SO4-acidified solution exceeded that in HCl-acidified solution. Additionally, ultrasonic treatment increased the rate of dissolution of aluminum and the amount dissolved. The quantity of aluminum dissolved at 60℃ was 1.5 to 2.0 times higher than that at 25℃.

Keywords: Coagulant, Aluminum, Ultrasonic, Acidification, Temperature, Sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
284 Characteristics of Aluminum Hybrid Composites

Authors: S. O. Adeosun, L. O. Osoba, O. O. Taiwo

Abstract:

Aluminum hybrid reinforcement technology is a response to the dynamic ever increasing service requirements of such industries as transportation, aerospace, automobile, marine, etc. It is unique in that it offers a platform of almost unending combinations of materials to produce various hybrid composites. This article reviews the studies carried out on various combinations of aluminum hybrid composite and the effects on mechanical, physical and chemical properties. It is observed that the extent of enhancement of these properties of hybrid composites is strongly dependent on the nature of the reinforcement, its hardness, particle size, volume fraction, uniformity of dispersion within the matrix and the method of hybrid production.

Keywords: Aluminum alloy, hybrid composites, properties, reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4694
283 Experimental Study and Analysis of Parabolic trough Collector with Various Reflectors

Authors: Avadhesh Yadav, Manoj Kumar, Balram

Abstract:

A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed For Aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than Aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using Aluminum sheet as reflector compared to Aluminum foil as reflector is 18.98% more.

Keywords: Parabolic trough collector, Reflectors, Air flow rates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4588
282 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminum alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40-minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, Mechanical properties, SCC resistance, Heat Treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
281 Study of Mechanical Properties for the Aluminum Bronze Matrix Composites of Hot Pressing

Authors: Shenq Yih Luo, Chung Hsien Lu

Abstract:

The aluminum bronze matrix alumina composites using hot press and resin infiltration were investigated to study their porosities, hardness, bending strengths, and microstructures. The experiment results show that the hardness of the sintered composites with the decrease of porosity increases. The composites without and with resin infiltration have about HRF 42-61 of about 34-40% of porosity and about HRF 62-83 of about 30-36% of porosity, respectively. Besides, the alumina composites contain a more amount of iron and nickel powders would cause a lower bending strength due to forming some weaker bonding among the iron, nickel, copper, aluminum under this hot pressing of shorter time.

Keywords: Aluminum bronze matrix composite, bending strength, hot pressing, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
280 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: Anodic aluminum oxide, nanotube, anodization, Sol-Gel, hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
279 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders

Authors: Badr Alsulami, Ahmed S. Elamary

Abstract:

This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglunds theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglunds theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglunds theory, BS8118 design method and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory, proposed to predict theoretically the USR of aluminum plate girders.

Keywords: Shear resistance, Aluminum, Cardiff theory, Hӧglund's theory, Plate girder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
278 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
277 Effect of Tube Materials and Special Coating on Coke Deposition in the Steam Cracking of Hydrocarbons

Authors: A. Niaei, D. Salari , N. Daneshvar, A. Chamandeh, R. Nabavi

Abstract:

The steam cracking reactions are always accompanied with the formation of coke which deposits on the walls of the tubular reactors. The investigation has attempted to control catalytic coking by the applying aluminum, zinc and ceramic coating like aluminum-magnesium by thermal spray and pack cementation method. Rate of coke formation during steam cracking of naphtha has been investigated both for uncoated stainless steel (with different alloys) and metal coating constructed with thermal Spray and pack cementation method with metal powders of Aluminum, Aluminum-Magnesium, zinc, silicon, nickel and chromium. The results of the study show that passivating the surface of SS321 with a coating of Aluminum and Aluminum-Magnesium can significantly reduce the rate of coke deposition during naphtha pyrolysis. SEM and EDAX techniques (Philips XL Series) were used to examine the coke deposits formed by the metal-hydrocarbon reactions. Our objective was to separate the different stages by identifying the characteristic morphologies.

Keywords: Steam Cracking, Pyrolysis, Coke deposition, thermalspray, Pack Cementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
276 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.

Keywords: Aluminum, Acidification, Sludge, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
275 Nanocharacterization of PIII Treated 7075 Aluminum Alloy

Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda

Abstract:

Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.

Keywords: Aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
274 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730
273 Component Comparison of Polyaluminum Chloride Produced from Various Methods

Authors: Wen Po Cheng, Chia Yun Chung, Ruey Fang Yu, Chao Feng Chen

Abstract:

The main objective of this research was to study the differences of aluminum hydrolytic products between two PACl preparation methods. These two methods were the acidification process of freshly formed amorphous Al(OH)3 and the conventional alkalization process of aluminum chloride solution. According to Ferron test and 27Al NMR analysis of those two PACl preparation procedures, the reaction rate constant (k) values and Al13 percentage of acid addition process at high basicity value were both lower than those values of the alkaline addition process. The results showed that the molecular structure and size distribution of the aluminum species in both preparing methods were suspected to be significantly different at high basicity value.

Keywords: Polyaluminum chloride, Al13, amorphous aluminum hydroxide, Ferron test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
272 Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Authors: Hamed Rezazadeh, Majid Ebrahimzadeh, Mohammad Reza Zeidi Yam

Abstract:

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum oxide is not applied to the surface like paint or plating, but is fully integrated with the underlying aluminum substrate, so cannot chip or peel. It has a highly ordered, porous structure that allows for secondary processes such as coloring and sealing. In this experimental paper, we focus on a reliable method for fabricating nanoporous alumina with high regularity. Starting from study of nanostructure materials synthesize methods. After that, porous alumina fabricate in the laboratory by anodization of aluminum oxide. Hard anodization processes are employed to fabricate the nanoporous alumina using 0.3M oxalic acid and 90, 120 and 140 anodized voltages. The nanoporous templates were characterized by SEM and FFT. The nanoporous templates using 140 voltages have high ordered. The pore formation, influence of the experimental conditions on the pore formation, the structural characteristics of the pore and the oxide chemical reactions involved in the pore growth are discuss.

Keywords: Alumina, Nanoporous Template, Anodization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
271 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: Life cycle assessment, aluminum production, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3956
270 On the Oil Repellency of Nanotextured Aluminum Surface

Authors: G. Momen, R. Jafari, M. Farzaneh

Abstract:

Two different superhydrophobic surfaces were elaborated and their oil repellency behavior was evaluated using several liquid with different surface tension. A silicone rubber/SiO2 nanocomposite coated (A) on aluminum substrate by “spin-coating" and the sample B was an anodized aluminum surface covered by Teflon-like coating. A high static contact angle about ∼162° was measured for two prepared surfaces on which the water droplet rolloff. Scanning electron microscopy (SEM) showed the presence of micro/nanostructures for both sample A and B similar to that of lotus leaf. However the sample A presented significantly different behaviour of wettability against the low surface tension liquid. Sample A has been wetted totally by oil (dodecan) droplet while sample B showed oleophobic behaviour. Oleophobic property of Teflon like coating can be contributed to the presence of CF2 and CF3 functional group which was shown by XPS analysis.

Keywords: Oleophobic, Superhydrophobic, Aluminum surface, Nano-texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
269 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine

Authors: H. M. El-Zomor, M. Hany

Abstract:

Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.

Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
268 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: Alumina, alumina distribution, aluminum electrolyzer, cryolite-alumina electrolyte, side ledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
267 Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

Authors: H. Harada, S. Nishida, T. Nagumo, M. Endo, H. Watari

Abstract:

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

Keywords: AZ91, AZ111, AZ121, Magnesium alloys, Twin roll casting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
266 Fabrication and Analysis of Bulk SiCp Reinforced Aluminum Metal Matrix Composites using Friction Stir Process

Authors: M.Puviyarasan, C.Praveen

Abstract:

In this study, Friction Stir Processing (FSP) a recent grain refinement technique was employed to disperse micron-sized (2 *m) SiCp particles into aluminum alloy AA6063. The feasibility to fabricate bulk composites through FSP was analyzed and experiments were conducted at different traverse speeds and wider volumes of the specimens. Micro structural observation were carried out by employing optical microscopy test of the cross sections in both parallel and perpendicular to the tool traverse direction. Mechanical property including micro hardness was evaluated in detail at various regions on the specimen. The composites had an excellent bonding with aluminum alloy substrate and a significant increase of 30% in the micro hardness value of metal matrix composite (MMC) as to that of the base metal has observed. The observations clearly indicate that SiC particles were uniformly distributed within the aluminum matrix.

Keywords: Friction Stir Processing, Metal matrix composite, Bulk composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
265 Classification of Buckling Behavior on Uniaxial Compression using A5052-O Sheets

Authors: S. Onoda, S. Yoshihara, B. J. MacDonald, Y. Okude

Abstract:

Aluminum alloy sheets have several advantages such as the lightweight, high-specific strength and recycling efficiency. Therefore, aluminum alloy sheets in sheet forming have been used in various areas as automotive components and so forth. During the process of sheet forming, wrinkling which is caused by compression stress might occur and the formability of sheets was affected by occurrence of wrinkling. A few studies of uniaxial compressive test by using square tubes, pipes and sheets were carried out to clarify the each wrinkling behavior. However, on uniaxial compressive test, deformation behavior of the sheets hasn-t be cleared. Then, it is necessary to clarify the relationship between the buckling behavior and the forming conditions. In this study, the effect of dimension of the sheet in the buckling behavior on compression test of aluminum alloy sheet was cleared by experiment and FEA. As the results, the buckling deformation was classified by three modes in terms of the distribution of equivalent plastic strain.

Keywords: Sheet forming, Compression test, Aluminum alloy sheet, Buckling behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
264 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520
263 Transient Three Dimensional FE Modeling for Thermal Analysis of Pulsed Current Gas Tungsten Arc Welding of Aluminum Alloy

Authors: N. Karunakaran, V. Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of aluminum alloy plates by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTA welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was aluminum alloy AA 6351 T6, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from the study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: Gas tungsten arc welding, pulsed current, finite element analysis, thermal analysis, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
262 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: Aluminum, carbon fiber, alumina fiber, thixomixing, adhesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
261 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame

Authors: Seong Do Kim, Woo Young Jung

Abstract:

Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.

Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
260 Tin (II) Chloride a Suitable Wetting Agent for AA1200 - SiC Composites

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, A. S. Abdulmunim

Abstract:

SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.

Keywords: Al-SIC, Aluminum, Composites, Intermetallic, Reinforcement, Tensile Strength, Wetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270