Search results for: latent heat storage unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2574

Search results for: latent heat storage unit

234 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Authors: Apetsi K. Ampiah, Zhao Xin

Abstract:

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Keywords: Friction damper, seismic, slip load, viscous damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
233 A Lactose-Free Yogurt Using Membrane Systems and Modified Milk Protein Concentrate: Production and Characterization

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

Using membrane technology and modification of milk protein structural properties, a lactose free yogurt was developed. The functional, textural and structural properties of the sample were evaluated and compared with the commercial ones. Results showed that the modification of protein in high fat set yogurt resulted in 11.55%, 18%, 20.21% and 7.08% higher hardness, consistency, water holding capacity, and shininess values compared with the control one. Furthermore, these indices of modified low fat set yogurt were 21.40%, 25.41%, 28.15% & 10.58% higher than the control one, which could be related to the gel network microstructural properties in yogurt formulated with modified protein. In this way, in comparison with the control one, the index of linkage strength (A), the number of linkages (z), and time scale of linkages (λrel) of the high fat modified yogurt were 22.10%, 50.68%, 21.82% higher than the control one; whereas, the average linear distance between two adjacent crosslinks (ξ), was 16.77% lower than the control one. For low fat modified yogurt, A, z, λrel, and ξ indices were 34.30%, 61.70% and 42.60% higher and 19.20% lower than the control one, respectively. The shelf life of modified yogurt was extended to 10 weeks in the refrigerator, while, the control set yogurt had a 3 weeks shelf life. The acidity of high fat and low fat modified yogurts increased from 76 to 84 and 72 to 80 Dornic degrees during 10 weeks of storage, respectively, whereas for control high fat and low fat yogurts they increased from 82 to 122 and 77 to 112 Dornic degrees, respectively. This behavior could be due to the elimination of microorganism’s source of energy in modified yogurt. Furthermore, the calories of high fat and low fat lactose free yogurts were 25% and 40% lower than their control samples, respectively. Generally, results showed that the lactose free yogurt with modified protein, despite of 1% lower protein content than the control one, showed better functional properties, nutritional properties, network parameters, and shelf stability, which could be promising in the set yogurt industry.

Keywords: Lactose free, low calorie, network properties, protein modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
232 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob

Abstract:

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

Keywords: BIM, building fire response, ranking, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
231 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings

Authors: Ranojoy Dutta, Adam Barker

Abstract:

Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.

Keywords: Electrochromic, operable windows, thermal comfort, natural ventilation, adaptive comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
230 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole

Abstract:

The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.

Keywords: Esters, emission, performance, and vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
229 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel J. O. Ferreira, Juan H. Sosa-Arnao, Bruno C. Moreira, Leonardo P. Rangel, Song W. Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugarcane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, superheaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller- Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows observing some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
228 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3817
227 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
226 Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food

Authors: Wilailak Siripornadulsil, Siriyanapat Tasaku, Jutamas Buahorm, Surasak Siripornadulsil

Abstract:

The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator&CaCO3 and Gram-positive, catalase- and oxidase-negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt & heat, proteolytic, amylolytic & lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 & MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 & SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.

Keywords: Lactic acid bacteria, pathogen, probiotic, protective culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818
225 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil

Abstract:

Due to a high ethanol demand, the approach for  effective ethanol production is important and has been developed  rapidly worldwide. Several agricultural wastes are highly  abundant in celluloses and the effective cellulase enzymes do exist  widely among microorganisms. Accordingly, the cellulose  degradation using microbial cellulase to produce a low-cost substrate  for ethanol production has attracted more attention. In this  study, the cellulase producing bacterial strain has been isolated  from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulase activity. The optimal temperature for its growth and  cellulase production is 37°C. The optimal temperature of bacterial  cellulase activity is 60°C. The cellulase enzyme from  Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36h. showed highest cellulase activity at 120U/mL when  grown in LB medium containing 2% (w/v). The capability of  Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulase activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production. 

 

Keywords: Acinetobacter sp. KKU44, bagasse, cellulase enzyme, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
224 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: Aspiration efficiency, energy, particulate matter, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
223 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
222 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
221 Thermal Analysis of Extrusion Process in Plastic Making

Authors: S. K. Fasogbon, T. M. Oladosu, O. S. Osasuyi

Abstract:

Plastic extrusion has been an important process of plastic production since 19th century. Meanwhile, in plastic extrusion process, wide variation in temperature along the extrudate usually leads to scraps formation on the side of finished products. To avoid this situation, there is a need to deeply understand temperature distribution along the extrudate in plastic extrusion process. This work developed an analytical model that predicts the temperature distribution over the billet (the polymers melt) along the extrudate during extrusion process with the limitation that the polymer in question does not cover biopolymer such as DNA. The model was solved and simulated. Results for two different plastic materials (polyvinylchloride and polycarbonate) using self-developed MATLAB code and a commercially developed software (ANSYS) were generated and ultimately compared. It was observed that there is a thermodynamic heat transfer from the entry level of the billet into the die down to the end of it. The graph plots indicate a natural exponential decay of temperature with time and along the die length, with the temperature being 413 K and 474 K for polyvinylchloride and polycarbonate respectively at the entry level and 299.3 K and 328.8 K at the exit when the temperature of the surrounding was 298 K. The extrusion model was validated by comparison of MATLAB code simulation with a commercially available ANSYS simulation and the results favourably agree. This work concludes that the developed mathematical model and the self-generated MATLAB code are reliable tools in predicting temperature distribution along the extrudate in plastic extrusion process.

Keywords: ANSYS, extrusion process, MATLAB, plastic making, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
220 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment

Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva

Abstract:

The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.

Keywords: Kazakhstan, oil, safety, toxic metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
219 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
218 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
217 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
216 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
215 Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics

Authors: L. Mahnicka

Abstract:

The alumosilicate ceramics with mullite crystalline phase are used in various branches of science and technique. The mullite refractory ceramics with high porosity serve as a heat insulator and as a constructional materials [1], [2]. The purpose of the work was to sinter high porosity ceramic and to increase the quantity of mullite phase in this mullite, mullite-corundum ceramics. Two types of compositions were prepared at during the experiment. The first type is compositions with commercial alumina and silica oxides. The second type is from mixing these oxides with 10, 20 and 30 wt.%. of kaolin. In all samples the Al2O3 and SiO2 were in 2.57:1 ratio, because that was conformed to mullite stechiometric compositions (3Al2O3.2SiO2). The types of alumina oxides were α-Al2O3 (d50=4µm) and γ-Al2O3 (d50=80µm). Ratios of α-: γ-Al2O3 were (1:1) or (1:3). The porous materials were prepared by slip casting of suspension of raw materials. The aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 26-47 wt.%. Pore formation occurred as a result of hydrogen formation in chemical reaction between aluminium paste and water [2]. The samples were sintered at the temperature of 1650°C and 1750°C for one hour. The increasing amount of kaolin, α-: γ-Al2O3 at the ratio (1:3) and sintering at the highest temperature raised the quantity of mullite phase. The mullite phase began to dominate over the corundum phase.

Keywords: Alumina, Kaolin, Mullite-corundum, Porous refractory ceramics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
214 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, Combustion, Emissions, Gas Turbine Combustor, Gasification, Solid Waste, Syngas and Waste to Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3619
213 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: Stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
212 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
211 Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, CO2 emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
210 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).

All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.

Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.

The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: Polymer packaging, life cycle assessment, resource efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431
209 Solar Calculations of Modified Arch (Semi Spherical) Type Greenhouse System for Bayburt City

Authors: Uğur Çakır, Erol Sahin, Kemal Çomaklı, Aysegül Çokgez Kus

Abstract:

Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefitting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However, this modeling study is run for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse. The optimum azimuth angles of 400, 300, 250, 200, 150, 100, 50 m2 modified arch greenhouse are 90o, 90o, 35o, 35o, 34o, 33o and 22o while their optimum k values (ratio of length to width) are 10, 10, 10, 10, 6, 4 and 4 respectively. Positioning the buildings in order to get more solar heat energy in winter and less in summer brings out energy and money savings and increases the comfort.

Keywords: Greenhousing, solar energy, direct radiation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
208 A Multiple-Objective Environmental Rationalization and Optimization for Material Substitution in the Production of Stone-Washed Jeans- Garments

Authors: Nabil A. Ibrahim, Nabil M. Abdel Moneim, Mohamed A. Ramadan, Marwa M. Hosni

Abstract:

As the Textile Industry is the second largest industry in Egypt and as small and medium-sized enterprises (SMEs) make up a great portion of this industry therein it is essential to apply the concept of Cleaner Production for the purpose of reducing pollution. In order to achieve this goal, a case study concerned with ecofriendly stone-washing of jeans-garments was investigated. A raw material-substitution option was adopted whereby the toxic potassium permanganate and sodium sulfide were replaced by the environmentally compatible hydrogen peroxide and glucose respectively where the concentrations of both replaced chemicals together with the operating time were optimized. In addition, a process-rationalization option involving four additional processes was investigated. By means of criteria such as product quality, effluent analysis, mass and heat balance; and cost analysis with the aid of a statistical model, a process optimization treatment revealed that the superior process optima were 50%, 0.15% and 50min for H2O2 concentration, glucose concentration and time, respectively. With these values the superior process ought to reduce the annual cost by about EGP 105 relative to the currently used conventional method.

Keywords: Cleaner Production, Eco-friendly of jeans garments, Stone washing, Textile Industry, Textile Wet Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
207 Improving Health Care and Patient Safety at the ICU by Using Innovative Medical Devices and ICT Tools: Examples from Bangladesh

Authors: Mannan Mridha, Mohammad S. Islam

Abstract:

Innovative medical technologies offer more effective medical care, with less risk to patient and healthcare personnel. Medical technology and devices when properly used provide better data, precise monitoring and less invasive treatments and can be more targeted and often less costly. The Intensive Care Unit (ICU) equipped with patient monitoring, respiratory and cardiac support, pain management, emergency resuscitation and life support devices is particularly prone to medical errors for various reasons. Many people in the developing countries now wonder whether their visit to hospital might harm rather than help them. This is because; clinicians in the developing countries are required to maintain an increasing workload with limited resources and absence of well-functioning safety system. A team of experts from the medical, biomedical and clinical engineering in Sweden and Bangladesh have worked together to study the incidents, adverse events at the ICU in Bangladesh. The study included both public and private hospitals to provide a better understanding for physical structure, organization and practice in operating processes of care, and the occurrence of adverse outcomes the errors, risks and accidents related to medical devices at the ICU, and to develop a ICT based support system in order to reduce hazards and errors and thus improve the quality of performance, care and cost effectiveness at the ICU. Concrete recommendations and guidelines have been made for preparing appropriate ICT related tools and methods for improving the routine for use of medical devices, reporting and analyzing of the incidents at the ICU in order to reduce the number of undetected and unsolved incidents and thus improve the patient safety.

Keywords: Accidents reporting system, patient car and safety, safe medical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
206 The Design of English Materials to communication the Identity of Amphawa District, Samut Songkram Province, for Sustainable Tourism

Authors: K. Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Amphawa district, Samut Songkram province for sustainable tourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of the Amphawa District, Samut Songkram province is the area controlled by Amphawa sub district (submunicipality). The working unit which runs and looks after Amphawa sub district administration is known as the Amphawa mayor. This establishment was built to be a resort for normal people and tourists visiting the Amphawa district near the Maekong River consisting of rest accommodations. Along the river there is a restaurant where food and drinks are served, rich mangrove forests, a learning center, fireflies and cork trees. The Amphawa district was built to honor and commemorate King Rama II and is where the greatest number of fireflies and cork trees can be seen in Thailand from May to October each year. 2. The communication of the identity of Amphawa District, Samut Songkram Province which the researcher could find and design to present in English materials can be summed up in 5 items: 1) The history of the Amphawa District, Samut Songkram province 2) The history of King Rama II Memorial Park 3) The identity of Amphawa Floating Market 4) The Learning center of Ecosystem: Fireflies and Cork Trees 5) How to keep Amphawa District, Samut Songkram Province for sustainable tourism.

Keywords: Foreigner tourists, signified, semiotics, sustainable tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
205 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671