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Abstract—The data encryption is the foundation of today’s
communication. On this basis, to improve the speed of data
encryption and decryption is always an important goal for
high-speed applications. This paper proposed an elliptic curve
crypto processor architecture based on SM2 prime field. Regarding
hardware implementation, we optimized the algorithms in different
stages of the structure. For modulo operation on finite field,
we proposed an optimized improvement of the Karatsuba-Ofman
multiplication algorithm and shortened the critical path through
the pipeline structure in the algorithm implementation. Based on
SM2 recommended prime field, a fast modular reduction algorithm
is used to reduce 512-bit data obtained from the multiplication
unit. The radix-4 extended Euclidean algorithm was used to realize
the conversion between the affine coordinate system and the
Jacobi projective coordinate system. In the parallel scheduling point
operations on elliptic curves, we proposed a three-level parallel
structure of point addition and point double based on the Jacobian
projective coordinate system. Combined with the scalar multiplication
algorithm, we added mutual pre-operation to the point addition
and double point operation to improve the efficiency of the scalar
point multiplication. The proposed ECC hardware architecture was
verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms,
and each 256-bit scalar multiplication operation took 0.275ms. The
performance for handling scalar multiplication is 32 times that of
CPU (dual-core ARM Cortex-A9).

Keywords—Elliptic curve cryptosystems, SM2, modular
multiplication, point multiplication.

I. INTRODUCTION

ELLIPTIC Curve Cryptography (ECC) is an asymmetric

encryption algorithm based on the mathematical theory

of elliptic curves. ECC has a higher security level when using

the same length key than the RSA public key cryptography

algorithm, and it was first proposed by Koblitz [1] and Miller

[2] in 1985. As a public key cryptography research focus, the

ECC algorithm has been proven to have great performance and

security advantages and has been widely used in many fields.

SM2 Elliptic Curve public key Cryptography algorithm [3] is

an ECC-based public key cryptography algorithm published

by China’s State Cryptography Administration (SCA) in 2010.

It is an ECC algorithm that defines a pseudo-Mersenne

prime field with a special prime number P256. The SM2

protocol provides functions such as public key encryption and

decryption, signature verification, and key exchange based on
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the SM2 elliptic curve public key cryptography algorithm.

As a national standard algorithm, SM2 has been applied to

electronic authentication systems, key management systems,

and other fields [4], [5].

The implementation of the elliptic curve cryptosystem

consists of four levels from top to bottom: protocol

layer, scalar point multiplication (PM), point add (PA)

and point double (PD), and finite field operation. The

finite field operation layer includes four basic algorithms:

modular addition (MA), modular subtraction (MS), modular

multiplication (MM), and modular inverse (MI). The protocol

implementation of the elliptic curve cryptosystem depends on

the mixed call of each level operation on the elliptic curve

group. As a top layer of the elliptic curve algorithm, PM

directly determines the computational speed of the whole

elliptic curve cryptographic architecture. PM depends on

PA and PD, and PA and PD depend on operations at the

finite field layer. Therefore, the point operation has problems,

such as large computation, complex structure, low algorithm

efficiency, and high resource consumption.

In the four modular operations of the finite field layer, the

computational complexity of modular addition and subtraction

can be ignored, while the calculation of modular inversion can

be avoided by the transformation from an affine coordinate

system to a projective coordinate system. Therefore, modular

multiplication is the key of the finite field operation layer.

In addition, the implementation of PA and PD is based

on continuous calls to finite field operations, so parallel

processing of their computations without data association is

the key to their acceleration. For PM, the scalar multiplication

algorithm complexity directly affects the performance of

the whole ECC processor. Therefore, many scholars have

researched the ECC algorithm to solve the above problems

[6], [7].

The implementation of the modular multiplication algorithm

can be divided into two types: interleaved modular

multiplication and the multiplication-then-reduce method.

The Montgomery algorithm based on interleaved modular

multiplication is often used in lightweight ECC processors

[8], [9]. Montgomery algorithm uses the bit shift method

instead of the costly division method, which can achieve

good resource utilization, but its disadvantage is high cycle

delay. So, the full-word multiply-then-reduce method is often

an attractive option for high-speed design. However, as

the length of the key increases, the resources required by

the full-word multiplier also increase. So, some optimized

algorithms, such as the Karatsuba algorithm, have also

appeared [10]-[12]. There are two methods for Instruction
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Fig. 1 Architecture of proposed ECC processor

Level Parallelism (ILP): on-the-fly ILP and Synthesis-ILP. The

former is in the running stage by the scheduler to process

the instruction to achieve parallel needs extra overhead to

process the instruction. The other is implemented before the

hardware synthesis is generated, which is less flexible but

avoids extra computation. PM algorithms include the binary

expansion scanning method, the Non-adjacent form (NAF)

scanning method, the NAF sliding window method, and the

Montgomery point multiplication algorithm. Although many

efficient ECC designs have been proposed, the demand for

data encryption speed also increases with the continuous

development of communication technology. Therefore, more

efficient design and better parallel schemes are necessary.

According to the above discussion, this paper presented

an ECC processor, as shown in Fig. 1, which is based

on the proposed algorithm implementation architecture. On

the basis of realizing the modularization of four finite field

operations, three groups of MM and MA/MD computing

units are instantiated, and their interfaces are packaged with

standardized instructions. Then, before hardware synthesis,

a projective coordinate point operation instruction list is

designed to call a three-layer parallel finite field operation

unit, and the corresponding PA, PD, and coordinate system

transformation operations are implemented according to

the input preset instructions. Finally, based on the scalar

multiplication algorithm, the PM operation is realized by

calling the point addition and double point operation units in

the way of the state machine.

In summary, we have made the following contributions in

this paper:

• We proposed a FULL-WORD multiplier structure based

on the KO algorithm. In this structure, we avoided

the m+1 bit wide multiplication in the KO algorithm

by introducing a single parallel addition to realize the

pre-operation, furthermore reducing the bit width of

addition by shifting the data in advance. By multiplexing

three m-bit width multipliers, using twice ko algorithm,

and introducing pipeline structure while optimizing the

critical path, the realization of 4-m bit large number

multiplication only after 6 clock cycles.

• A three-level parallel instruction structure is proposed to

implement projective coordinate point operation. Based

on the recommended P256 module, a synthesis-ILP

approach was adopted to design a projective coordinate

point operation parallel structure in advance. Combined

with the scalar multiplication algorithm, based on the

proposed parallel operation structure, the pre-operation

of PA and PD is added to idle instructions so that

one round of modular multiplication can be reduced

in the alternating operation of PA and PD to improve

computational efficiency.

II. MODULAR OPERATION MODULE OVER SM2 PRIME

FIELD

In finite field modulo operation, the computing unit includes

modular multiplication, modular addition and subtraction, and

modular inversion. The modular multiplication unit can be

divided into two parts: multiply and reduce.

A. Proposed Multiplication Method

The idea for the traditional KOA algorithm [13] is to

divide and then calculate, using a recursive way to decompose

a complex multiplication operation into multiple simple

multiplication operations, which is faster and more efficient

than the traditional multiplier. For two m-bits, the complexity

is O(m2) if you multiply them directly. If the KOA algorithm

is used, the complexity can be reduced to O(mlb3). Directly

using the FULL-word multiplier to multiply two m digits

is too costly and inefficient. However, Algorithm 1 can be

used to realize the full word multiplier by calculating m/2 bit

multipliers through half-byte multipliers.

Algorithm 1 Karatsuba-Ofman Multiplication Algorithm

Input: A: 2m bit integer, satisfy A = a1 × 2m + a0 B: 2m
bit integer, satisfy B = b1 × 2m + b0

Output: C: 4m bit product, satisfy C = A×B.

1: P00 ← a0 × b0; asum ← a0 + a1;

2: P11 ← a1 × b1; bsum ← b0 + b1;

3: Pss ← asum × bsum;

4: M ← Pss − P00 − P11;

5: C ← P11 × 22m +M × 22m + P00;

6: return C

Based on the original algorithm, in order to further optimize

the critical path and reduce the consumption of hardware

resources. The optimized Karatsuba-Ofman multiplication

algorithm is presented in Algorithm 2.

The proposed algorithm is an improved version of

Algorithm 1, and the structure is optimized and modified.

The aim is to increase the maximum frequency and improve

the efficiency. In Algorithm 1, half-word multiplications are

reduced. However, two additional half-word additions and

a full-word addition are introduced, and one of the m-bit
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Algorithm 2 Proposed Multiplication Algorithm

Input: A: 2m bit integer, satisfy A = a1 × 2m + a0 B: 2m
bit integer, satisfy B = b1 × 2m + b0

Output: C: 4m bit product, satisfy C = A×B.

1: P00 = a0 × b0; asum = a0 + a1;

2: P11 = a1 × b1; bsum = b0 + b1;

3: S = {asum[0], bsum[0]}
4: if S == 2′b00 then
5: Z = 0;

6: else if S == 2′b01 then
7: Z = asum;

8: else if S == 2′b10 then
9: Z = bsum;

10: else if S == 2′b11 then
11: Z = asum + bsum − 1;

12: end if
13: Pss = asum[m : 1]× bsum[m : 1];
14: C = {P11, P00[2m− 1 : m]} − P00 − P11;

15: C = C + {Pss, 2
′b0}+ Z;

16: C = {C,P00[m− 1 : 0]};

17: return C

TABLE I
Z VALUES BASED ON asum[0] AND bsum[0]

asum[0] bsum[0] Z

0 0 0
0 1 asum
1 0 asum
1 1 asum + bsum − 1′b1

multiplications is changed to (m+1) bit multiplications. In

Algorithm 2, we convert the m+1 bit multiplication to m bit

multiplication by pre-calculating the last two digits of the

(m+1) bit multiplication in advance by adding an addition

of parallel operations. It avoids resource waste and extra

calculation delay when the (m+1) bit multiplier is reused. The

(m+1) bit multiplier can be expressed as (1):

asum[m : 0] ∗ bsum[m : 0] =

(asum[m : 1] ∗ bsum[m : 1]) << 2 + asum[0] ∗ bsum[0]

+ (asum[m : 1] ∗ bsum[0]) << 1

+ (asum[0] ∗ bsum[m : 1]) << 1;

(1)

Z =asum[0] ∗ bsum[0] + (asum[m : 1] ∗ bsum[0]) << 1+

(asum[0] ∗ bsum[m : 1]) << 1;

asum[m : 0] ∗ bsum[m : 0]

=(asum[m : 1] ∗ bsum[m : 1]) << 2 + Z;
(2)

Then, the result influence of the corresponding asum[0] and

bsum[0] on Z is shown in Table I. Obviously, for the result

of Z, only when the Z = asum + bsum − 1, it requires

additional parallel addition. Besides, the step15 of Algorithm 2

requires an additional addition. However, a reasonable pipeline

structure can reduce the influence of such additions on the

path.

(a) Cascading KO
Structure

(b) Our 2m-bit mult
pipeline structure

(c) Our 4m-bit mult
pipeline structure

Fig. 2 Mult pipeline structure

In addition, we can optimize the addition and subtraction

at the end of algorithm 1. It can be noted that step5, there is

no overlap between P11 ∗ 2m and P00, so this addition can be

substituted by bit concatenation as shown in (3). At the same

time, it can be found that the output low m bit data are only

affected by the parameter P00. Therefore, the calculation of a

low m bit in the process of addition and subtraction can be

ignored. Thus, the bit width of the adder can be reduced by

m bits, further reducing the resource consumption. Finally, the

low mb data is added to the output again by bit concatenation,

as shown in (4). Finally, replacing Pss in algorithm 1 with

Pss + Z becomes step 15-16 in the proposed algorithm.

C = {P11, P00} − P00 ∗ 2m − P11 ∗ 2m + Pss2
m; (3)

C = {P11, P00} >> 2m − P00 − P11 + Pss; (4)

According to Algorithm 1, multiplication is preceded by

two parallel addition operations and followed by three serial

addition and subtraction operations. If the Cascading KO

structure Fig. 2(a) is adopted in implementing the 4m-bit

multiplier with two iterations of the KO algorithm based on the

m-bit multiplier, it would result in huge critical path delays.

Based on the existing pipeline structure [14], we analyze the

critical path of Algorithm 2, so that multiplication and addition

are executed in parallel in the operation process to reduce the

critical path length. The optimized improvement of Algorithm

2 realizes 2m bit multiplication by multiplexing an m bit

multiplier in pipeline structure with the delay of 4 cycles Fig.

2(b) . Then three proposed 2m bit multipliers are used for

parallel multiplexing. After two additional addition cycles, it

takes 6 cycles to realize the multiplication of 4m bit large

numbers, Fig. 2(c) .

B. Fast Reduction Method

As a pseudo-Mersenne prime, SCA-256 prime (P256) is

shown in (5). Or P256 can be expressed in a fast reduction

form such as (6). Thus, the modulo formula for the higher

power of 2 can be derived as follows, shown as (7):
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P256 =0xFFFFFFFE FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF 00000000

FFFFFFFF FFFFFFFF
(5)

P256 = 2256 − 2224 − 296 + 264− 1 (6)

2256 ≡2224 + 296 − 264 + 1(modP256)

2288 ≡2224 + 2128 − 264 + 232 + 1(modP256)

...

...

(7)

C =(c15, ..., c2, c1, c0)

C =c15 ∗ 2480 + c14 + 2448 + ...+ c1 ∗ 232 + c0
(8)

The result of a 512-bit multiplication can be split 32 bits

wide and divided into 16 parts with different weights, as shown

in (8). Applying the modulo operation to C, the above modulo

(7) for higher powers of 2 can be brought into (8). Then, the

modulo reduction of 512-bits based on P256 can be converted

into a fixed number of addition and subtraction.

Compared with traditional modular operation, the algorithm

complexity can be greatly reduced by the way of fast

modular reduction. In addition, on this basis, the computational

complexity can be reduced again by pre-calculating repeated

operations [15]. By combining and decomposing the

reduction algorithm, we can find that many parameters are

calculated repeatedly in the whole operation process, such as

c[12]+c[13]+c[14]+c[15]. In addition, the critical path delay

in the process of modulo reduction is reduced by inserting a

pipeline. Finally, the 512-bit number is reduced by 4 cycles.

C. Optimized Modular ADD/SUB

In order to reduce resource consumption, the modular

addition and modular subtraction units are implemented in

one module. The module selects different initial values for

calculation according to the modular addition and subtraction

mode. The result of Modular addition may exceed P256,

so P256 needs to be subtracted from the result. Modular

subtraction is probably going to be negative, so it needs to add

P256. Finally, the final output result is determined according

to the overflow flag bit, as shown in Algorithm 3.

In Algorithm 3. SEL is the mode selection. According to

the different modes of modular addition and subtraction, m

and b are judged to be complement codes, and the calculation

is completed through steps 6 to 7, where c0 is the overflow

flag bit, and the final calculation result can be determined

according to the value of c0 and SEL, its structure is shown

in the Fig. 3.

D. Modular Inversion and Division

Generally, the algorithms of modular inverse on the prime

field include extended Euclid, Fermat’s Little Theorem, and

the Montgomery algorithm. The extended Euclid algorithm

Algorithm 3 Optimized Modular Add/Sub

Input: a, b, SEL
Output: out = (a+ /− b)modP256

1: if SEL ==′ ADD′ then
2: m = P256 + 1′b1;

3: else if SEL ==′ SUB′ then
4: b = b+ 1′b1;m = P256;

5: end if
6: {c0, s0} = a+ b;
7: {c1, s1} = {c0, s0}+m;

8: if ((SEL ==′ ADD′)&&(c0 == 1))||((SEL ==′

SUB′)&&(c0 == 0)) then
9: out = s1;

10: else
11: out = s0;

12: end if
13: return out;

Fig. 3 Modular Add/Sub Structure

adopts the division method, which can be changed into

addition and subtraction operation and binary shift according

to the property of greatest common divisor (GCD) so as

to be able to be implemented efficiently on the hardware.

In addition, there is a more efficient extended Euclid

algorithm [16] based on the Radix-4 binary GCD algorithm.

Its implementation can be realized by bitwise shifting and

modular operations. The upper limit of its operation steps

is 2k, and the maximum delay corresponding to each step

corresponds to a (k + 4) bit full adder delay. Therefore, the

upper limit of its total computing time is 2k(k + 4), and its

time complexity is O((log(p))2). Compared to the extended

Euclidean algorithm with a time complexity of O(p(log(p))2),
the Radix-4 binary GCD modular division algorithm is more

efficient.

III. SCALAR POINT OPERATION MODULE

All scalar point operations are based on points on elliptic

curves. A non-super singular elliptic curve over GF (p) for p >
3, and the Weierstrass equation is defined as y2 = x3+ax+b,
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and the SM2 is defined in a particular field of prime numbers,

where a=-3.

The formula for adding the same points and points on

an elliptic curve differs. They are called points double (PD)

and point addition (PA). In addition, all operations in the

formula are operations based on finite fields. The scalar point

multiplication (PM) consists of repeated PD and PA and can

be defined as follows, as shown in (9):

kP =

k∑

i=1

P = P + P + P + ...+ P (9)

A. Optimized Point Add Scheduling

Through analysis, we can find that the calculation of PA and

PD involves modular inversion operations, which is tedious.

Therefore, we can avoid modular inverse operation through

coordinate system transformation. The PA and PD formulas in

mixed affine-Jacobian coordinates are shown in (10) and (11).

However, at the end of the calculation, an extra coordinate

system transformation operation is needed.

X3 =(Y2Z
3
1 − Y1)

2 − (X2Z
2
1 −X1)

2(X1 +X2Z
2
1 )

Y3 =(Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)

2 −X3)

− Y1(X2Z
2
1 −X1)

2

Z3 =(X2Z
2
1 −X1)Z1

(10)

According to (10) and (11), PD and PA operations in the

Jacobian projective coordinate system can be converted into

a series of finite field operations without modular inversions.

From the previous analysis in Section I, we know that the

majority of the operation time is from the call to the modulo

multiplication operation. By reusing the same parameters,

(10) can at least be divided into 12 modular multiplication

operations and several modular addition operations, among

which modular addition operations can be implemented in

parallel when calculating modular multiplication operations.

Therefore, we will focus on the time-consuming of modular

multiplication.

In order to realize PA and PD operation more efficiently,

a variety of parallel architectures of point operation is

proposed to reduce the running time. Point-operating-level

parallel architectures deploy multiple modular operational

units to perform computations in parallel, which have no

data correlation with each other. Depending on the number of

deployed modular computing units, the computational design

of the parallel architecture is different. In this paper, we

accelerate the point addition and double point operation by

synthesizing three modular multiplication units.

Based on the hardware architecture of three-level parallel,

according to the correlation between its data, it can be divided

into 5 rounds by decomposing the 12 modular operations of

PA. The Point Add Scheduling is shown in Table II. Where

the A = X2Z
2
1 −X1, B = Y2Z

3
1 − Y1.

Based on the parallel design, the PA calculation time is

optimized from 12*MM to 5*MM. Besides, combined with

PM algorithm analysis, it can be found that in most PM

algorithms, PA operations are generally inserted between PD

TABLE II
TRADITIONAL POINT ADD SCHEDULING

OP rand Unit1 Unit2 Unit3

1 Z2
1 Z1Y2 NONE

2 Y2Z3
1 X2Z2

1 NONE
3 AZ1 A2 A(X2 +X3Z2

2 )
4 X1A2 B2 A3

5 B(X1A2 −X2) Y1A3 NONE

TABLE III
OPTIMIZED POINT ADD SCHEDULING

OP rand Unit1 Unit2 Unit3

if(pre PD) skip 1 Z2
1 Z1Y2 NONE

2 Y2Z3
1 X2Z2

1 NONE
3 AZ1 A2 A(X2 +X3Z2

2 )
4 X1A2 B2 A3

5 B(X1A2 −X2) Y1A3 Z2
3

operations, such as binary shift scalar multiplication algorithm,

etc. The parallel design of PD is shown in Table IV. Obviously,

the point-addition operation in the Jacobi projective coordinate

system is more complex than the point-double operation, and

the point-addition time is 5*MM, while the point-double time

is 4*MM. This leads to the idle hardware unit in the computing

process, resulting in a waste of resources. Therefore, we adopt

an optimized Point Add Scheduling, as shown in Table III.

In Table II, the first round of MM operation in the original

scheduling is put into the calculation of the last round of PD

operation. Before the first round of the point-add operation,

we determine whether the point-add operation follows the

PD operation. If so, we skip the first round of the MM

operation. In this way, the operation time of PA operation can

be shortened from the previous 5*MM to 4*MM, effectively

improving the operation speed of PA. In the last round of

modular multiplication of PA, the pre-operation is introduced

to optimize the double operation.

B. Optimized Proposed Point Double Scheduling

X3 =(3X2
1 + aZ4

1 )
2 − 8X1Y

2
1

Y3 =(3X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1

Z3 =2Y1Z1

(11)

In Jacobi affine coordinates, unlike the PA operation, the

multiple-point operation has an additional parameter a=-3,

which is based on the SM2 parameter. By replacing a with

(-3), we can express (11) as (12):

(3X2
1 − 3Z4

1 ) = 3(X1 − Z2
1 )(X1 + Z2

1 ) (12)

Thus, the original 3 modular multiplication calculation is

converted into two modular multiplication calculations. Thus,

the whole multipoint operation can be divided into 8 modular

multiplication operations. Similar to the previous parallel

scheduling design of PA operation, based on the three-level

parallel hardware architecture, PD’s 8 modular operations can

be decomposed. According to its data independence, PD can
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TABLE IV
TRADITIONAL POINT DOUBLE SCHEDULING

OP rand Unit1 Unit2 Unit3

1 Z2
1 NONE NONE

2 (X1 + Z2
1 )(X1 − Z2

1 ) Y 2
1 Y1Z1

3 (3X2
1 − 3Z4

1 )
2 2X1Y 2

1 4Y 4
1

4 (3X2
1 − 3Z4

1 )(4X1Y 2
1 −X2) NONE NONE

TABLE V
OPTIMIZED POINT DOUBLE SCHEDULING

OP rand Unit1 Unit2 Unit3

if(pre PA) skip 1 Z2
1 NONE NONE

2 (X1 + Z2
1 )(X1 − Z2

1 ) Y 2
1 Y1Z1

3 (3X2
1 − 3Z4

1 )
2 2X1Y 2

1 4Y 4
1

4 (3X2
1 − 3Z4

1 )(4X1Y 2
1 −X2) Z2

3 Z3Y2

be divided into 4 rounds of operation implementation, as

shown in Table IV.

Based on this parallel method, the precalculation of PA

operation and the judgment operation before the first round

of calculation are introduced. We suppose the PD operation

follows the PA operation. In that case, the first modular

multiplication operation is skipped, as shown in Table V. Thus,

the calculation delay of the PD operation is reduced from

4*MM to 3*MM. The speed of PD operation is improved

effectively.

C. Coordinate System Transform

After we have done the calculation based on the elliptic

curve, the result is based on the Jacobi projective coordinate

system, so we need to convert it back to the affine coordinate

system. The relationship between its Jacobian projective

coordinates and affine coordinates can be described as (13).

The operations are shown in Table VI.

X = XJZ
−2
J , Y = YJZ

−3
J (13)

D. Point Multiplication Module

The Montgomery point multiplication algorithm is the

most efficient and widely used among the existing

scalar multiplication algorithms. However, the Montgomery

algorithm needs to realize the parallel of the point addition

unit and point double unit, resulting in twice the resource

consumption. Moreover, according to the Montgomery PM

algorithm, PA and PD operations in the Jacobiaffine coordinate

system need to introduce additional Z2 parameters. As a

TABLE VI
COORDINATE SYSTEM TRANSFORM

OP rand Unit1 Unit2 Unit3

1 Z2
3

2 Z3
3

3 INV Z2
3

4 INV Z3
3

5 X3(INV Z2
3 ) Y3(INV Z3

3 )

TABLE VII
CLOCK NUMBER AND DELAY TIME OF EACH UNIT

Operation Cycles Time per operation

MA/MS 1 20.1ns
MM 10 0.201us
MI 624 12.6us

NAF 120 2.42us
PA 50 1.01us
PD 40 0.81us
PM 13662 0.275ms

result, the complexity of the original PA and PD operations is

greatly increased. So, we adopted the NAF algorithm [17] to

implement a Point Multiplication Module.

IV. VERIFICATION AND HARDWARE IMPLEMENTATION

RESULTS

The ECC processor architecture is described using

VHDL-Verilog language. This architecture was verified and

implemented on Xilinx FPGA boards Virtex-7 based on the

Vivado 2020.2 EDA tool.

A. Analysis of Required Clock Cycles

A scalar multiplication operation can be decomposed into

repeated calls of point addition and multiple points in

the Jacobi projective coordinate system and two inversion

operations required for coordinate system transformation.

According to the NAF algorithm, the time of a PM can be

expressed as (14):

N + (L− 1)D + (L/(r + 1)− 1)A+ 2I

=D + (2r−1 − 1)A+ (D − 1)D + (L/(r + 1)− 1)A+ 2I

=LD + (2r−1 + L/(r + 1)− 2)A+ 2I
(14)

where N is the clock cycle for calculating NAF (k), D and A

are the clock cycle to perform PD and PA operations, r is the

width of NAF, l is the length of scalar k, and I is the clock

cycle required for modular inversion.

The clock number of each unit and the time delay

corresponding to a single operation are shown in Table VII.

Because MI calculations are involved, the number of clocks

required for the PM calculation results from multiple tests.

B. FPGA-Based Implementation

The ECC processor structure is realized on Virtex-7 by

multiplexing three MM and MA/MS unit groups. The resource

occupation of each module is shown in Table VIII.

According to Table VIII, no DSP resources are used in the

whole implementation process of the ECC processor. This may

lead to poor computing performance compared with the DSP

design, but it has good portability and can be implemented on

other platforms, such as ASIC.

The performance results on the FPGA platform and

the comparison with other designs are shown in Table

IX. Compared with [18], it adopts Montgomery modular
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TABLE VIII
AREA OF EACH MODULE

module LUT REG DSP

NAF 2352 1620 0
MA/MS 1205 612 0

Multiplior 20170 3289 0
Reduction 2218 817 0

Radix-4 Inversion 8625 1570 0

TABLE IX
COMPARISON WITH OTHER DESIGNS

Paper Ours [18] [19] [20] [21]

FPGA Virtex-7 Virtex-7 Virtex-7 Virtex-6 Virtex-6
Field P256 P256 F256 F256 P256

Freq(MHz) 49.6 244 124.2 327 38.045
Clock(K) 13.66 148.26 464.1 153.16 14.24

Area LUTs 76241 16982 6400(slices) 65600 27655
Area DSP 0 32 0 0 0

PM time(ms) 0.275 0.608 3.73 0.47 0.37

multiplication, which has resource consumption and frequency

advantages. However, the high cycle delay brought by the

serial Montgomery algorithm leads to its overall computing

cycle being much higher than our design. Compared with [19],

it is implemented based on the NIST-256 prime number field.

Although it is much less than ours in resource consumption,

its computing speed is also much higher. Compared with

[20], although it is also implemented in a multilevel parallel

way, the computing speed is slower than ours compared

with its frequency and computing cycle. Compared with [21],

we consume more resources to realize parallel and pipeline

insertion to improve the frequency, which has advantages in

the final operation cycle and frequency.

Although the proposed design consumes more area, it brings

shorter running cycles and faster running speeds through

multiplier optimization and three-level parallelism.

C. Comparison with CPU

We tested the application effect of the proposed ECC

processor structure on an embedded platform. This structure

is implemented on the Xilinx ZYNQ-7 platform. Its highest

frequency is similar to that of virtex-7 and can complete

3636 PM operations in one second. In the PS (processing

system) of zynq, we implemented PM test on the CPU of

embedded devices based on openSSL1.1.1, as shown in Table

X. Cpu-based (dual-core ARM Cortex-A9) can only perform

112 PM calculations per second. As shown in this test, more

than 32 times speed improvements can be achieved by using

the proposed ECC processor architecture.

TABLE X
COMPARISON WITH CPU

Divice 1/PM Speed

CPU(dual-core ARM Cortex-9) 112.8 1
Proposed ECC structure 3636.7 32.24

V. CONCLUSION

This paper proposed a design of an elliptic curve

cryptographic processor based on SM2 over GF(P). This

paper optimized large number multipliers in finite field MM

operations and proposed a structure of full word multipliers

based on the KO algorithm. The (m+1) bit multiplication is

avoided, and the adder is optimized. The 256-bit multiplication

is realized in 6 cycles by pipeline structure and multiplexing

three m-bit width multipliers. In addition, a three-level parallel

PA and PD structure is proposed. By optimizing the parallel

scheduling instruction and adding the pre-operation method,

the operation complexity of PA and PD is reduced to 3*MM

and 4*MM, respectively. The implementation results show that

the proposed ECC processor structure can achieve 0.275ms

per PM. For PM computing. The ECC processor improves

performance by more than 32 times compared to the CPU

(dual-core ARM Cortex-A9).
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