Search results for: Sliding window DFT.
149 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845148 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.
Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352147 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads
Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang
Abstract:
Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.
Keywords: Anti-dip slopes, crest loads, stability analysis, toppling failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905146 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270145 Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images
Authors: Dr. H. B. Kekre, Sudeep D. Thepade
Abstract:
Panoramic view generation has always offered novel and distinct challenges in the field of image processing. Panoramic view generation is nothing but construction of bigger view mosaic image from set of partial images of the desired view. The paper presents a solution to one of the problems of image seascape formation where some of the partial images are color and others are grayscale. The simplest solution could be to convert all image parts into grayscale images and fusing them to get grayscale image panorama. But in the multihued world, obtaining the colored seascape will always be preferred. This could be achieved by picking colors from the color parts and squirting them in grayscale parts of the seascape. So firstly the grayscale image parts should be colored with help of color image parts and then these parts should be fused to construct the seascape image. The problem of coloring grayscale images has no exact solution. In the proposed technique of panoramic view generation, the job of transferring color traits from reference color image to grayscale image is done by palette based method. In this technique, the color palette is prepared using pixel windows of some degrees taken from color image parts. Then the grayscale image part is divided into pixel windows with same degrees. For every window of grayscale image part the palette is searched and equivalent color values are found, which could be used to color grayscale window. For palette preparation we have used RGB color space and Kekre-s LUV color space. Kekre-s LUV color space gives better quality of coloring. The searching time through color palette is improved over the exhaustive search using Kekre-s fast search technique. After coloring the grayscale image pieces the next job is fusion of all these pieces to obtain panoramic view. For similarity estimation between partial images correlation coefficient is used.Keywords: Panoramic View, Similarity Estimate, Color Transfer, Color Palette, Kekre's Fast Search, Kekre's LUV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753144 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis
Authors: A. Ghanbari Mardasi, N. Wu, C. Wu
Abstract:
In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.
Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949143 Localized Non-Stability of the Semi-Infinite Elastic Orthotropic Plate
Authors: Reza Sharifian, Vagharshak Belubekyan
Abstract:
This paper is concerned with an investigation into the localized non-stability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and different boundary conditions, clamped, hinged, sliding contact and free on the other edge, are considered. The mathematical model is used and a general solution is presented the conditions under which localized solutions exist are investigated.Keywords: Localized, Non-stability, Orthotropic, Semi-infinite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181142 Collocation Assessment between GEO and GSO Satellites
Authors: A. E. Emam, M. Abd Elghany
Abstract:
The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09° E/W and +/- 0.07° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.Keywords: Satellite, GEO, collocation, risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327141 A Variable Structure MRAC for a Class of MIMO Systems
Authors: Ardeshir Karami Mohammadi
Abstract:
A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580140 Genetic-Based Planning with Recursive Subgoals
Authors: Han Yu, Dan C. Marinescu, Annie S. Wu, Howard Jay Siegel
Abstract:
In this paper, we introduce an effective strategy for subgoal division and ordering based upon recursive subgoals and combine this strategy with a genetic-based planning approach. This strategy can be applied to domains with conjunctive goals. The main idea is to recursively decompose a goal into a set of serializable subgoals and to specify a strict ordering among the subgoals. Empirical results show that the recursive subgoal strategy reduces the size of the search space and improves the quality of solutions to planning problems.Keywords: Planning, recursive subgoals, Sliding-tile puzzle, subgoal interaction, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509139 Robust Position Control of an Electromechanical Actuator for Automotive Applications
Authors: Markus Reichhartinger, Martin Horn
Abstract:
In this paper, the position control of an electronic throttle actuator is outlined. The dynamic behavior of the actuator is described with the help of an uncertain plant model. This motivates the controller design based on the ideas of higher-order slidingmodes. As a consequence anti-chattering techniques can be omitted. It is shown that the same concept is applicable to estimate unmeasureable signals. The control law and the observer are implemented on an electronic control unit. Results achieved by numerical simulations and real world experiments are presented and discussed.Keywords: higher order sliding-mode, throttle actuator, electromechanicalsystem, robust and nonlinear control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016138 Oxide Based Resistive Random Access Memory Device for High Density Non Volatile Memory Applications
Authors: Z. Fang, X. P. Wang, G. Q. Lo, D. L. Kwong
Abstract:
In this work, we demonstrated vertical RRAM device fabricated at the sidewall of contact hole structures for possible future 3-D stacking integrations. The fabricated devices exhibit polarity dependent bipolar resistive switching with small operation voltage of less than 1V for both set and reset process. A good retention of memory window ~50 times is maintained after 1000s voltage bias.
Keywords: Bipolar switching, non volatile memory, resistive random access memory, 3-D stacking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199137 Effect of Band Contact on the Temperature Distribution for Dry Friction Clutch
Authors: Oday I. Abdullah, J. Schlattmann
Abstract:
In this study, the two dimensional heat conduction problem for the dry friction clutch disc is modeled mathematically analysis and is solved numerically using finite element method, to determine the temperature field when band contacts occurs between the rubbing surfaces during the operation of an automotive clutch. Temperature calculation have been made for contact area of different band width and the results obtained compared with these attained when complete contact occurs. Furthermore, the effects of slipping time and sliding velocity function are investigated as well. Both single and repeated engagements made at regular interval are considered.Keywords: Band contact, dry friction clutch, frictional heating, temperature field, 2D FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630136 Interface Location in Single Phase Stirred Tanks
Authors: I. Mahdavi, R. Janamiri, A. Sinkakarimi, M. Safdari, M. H. Sedaghat, A. Zamani, A. Hoseini, M. Karimi
Abstract:
In this work, study the location of interface in a stirred vessel with Rushton impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.
Keywords: CFD, Interface, Rushton impeller, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725135 CFD Investigation of Interface Location in Stirred Tanks with a Concave Impeller
Authors: P. Parvasi, R. Janamiri, A. Sinkakarimi, I. Mahdavi, M. Safdari, M. H. Sedaghat, A. Hosseini, M. Karimi
Abstract:
In this work study the location of interface in a stirred vessel with a Concave impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.
Keywords: CFD, Interface, Concave impeller, turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261134 New Efficient Iterative Optimization Algorithm to Design the Two Channel QMF Bank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
This paper proposes an efficient method for the design of two channel quadrature mirror filter (QMF) bank. To achieve minimum value of reconstruction error near to perfect reconstruction, a linear optimization process has been proposed. Prototype low pass filter has been designed using Kaiser window function. The modified algorithm has been developed to optimize the reconstruction error using linear objective function through iteration method. The result obtained, show that the performance of the proposed algorithm is better than that of the already exists methods.Keywords: Filterbank, near perfect reconstruction, Kaiserwindow, QMF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676133 Recent Trends in Supply Chain Delivery Models
Authors: Alfred L. Guiffrida
Abstract:
A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.
Keywords: Delivery performance, Delivery window, Supply chain delivery models, Supply chain performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349132 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: Drift assist control system, remote control cars, gyroscope, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556131 An Integrated Predictor for Cis-Regulatory Modules
Authors: Darby Tien-Hao Chang, Guan-Yu Shiu, You-Jie Sun
Abstract:
Various cis-regulatory module (CRM) predictors have been proposed in the last decade. Several well-established CRM predictors adopted different categories of prediction strategies, including window clustering, probabilistic modeling and phylogenetic footprinting. Appropriate integration of them has a potential to achieve high quality CRM prediction. This study analyzed four existing CRM predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to seek a predictor combination that delivers a higher accuracy than individual CRM predictors. 465 CRMs across 140 Drosophila melanogaster genes from the RED fly database were used to evaluate the integrated CRM predictor proposed in this study. The results show that four predictor combinations achieved superior performance than the best individual CRM predictor.
Keywords: Cis-regulatory module, transcription factor binding site.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650130 Thermal Modelling and Experimental Comparison for a Moving Pantograph Strip
Authors: Nicolas Delcey, Philippe Baucour, Didier Chamagne, Geneviève Wimmer, Auditeau Gérard, Bausseron Thomas, Bouger Odile, Blanvillain Gérard
Abstract:
This paper proposes a thermal study of the catenary/pantograph interface for a train in motion. A 2.5D complex model of the pantograph strip has been defined and created by a coupling between a 1D and a 2D model. Experimental and simulation results are presented and with a comparison allow validating the 2.5D model. Some physical phenomena are described and presented with the help of the model such as the stagger motion thermal effect, particular heats and the effect of the material characteristics. Finally it is possible to predict the critical thermal configuration during a train trip.Keywords: 2.5D modelling, pantograph/catenary liaison, sliding contact, Joule effect, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114129 Validation Testing for Temporal Neural Networks for RBF Recognition
Authors: Khaled E. A. Negm
Abstract:
A neuron can emit spikes in an irregular time basis and by averaging over a certain time window one would ignore a lot of information. It is known that in the context of fast information processing there is no sufficient time to sample an average firing rate of the spiking neurons. The present work shows that the spiking neurons are capable of computing the radial basis functions by storing the relevant information in the neurons' delays. One of the fundamental findings of the this research also is that when using overlapping receptive fields to encode the data patterns it increases the network-s clustering capacity. The clustering algorithm that is discussed here is interesting from computer science and neuroscience point of view as well as from a perspective.
Keywords: Temporal Neurons, RBF Recognition, Perturbation, On Line Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492128 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc
Abstract:
Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.
Keywords: numerical model, additive manufacturing, frictional heat generation, process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516127 An Android Geofencing App for Autonomous Remote Switch Control
Authors: Jamie Wong, Daisy Sang, Chang-Shyh Peng
Abstract:
Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch.Keywords: Location based service, geofence, autonomous, remote switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440126 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.
Keywords: Face detection algorithm, Haar features, Security of ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109125 An Optimized Design of Non-uniform Filterbank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.Keywords: Tree structure, NUFB, QMF, NPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738124 A Dynamic Filter for Removal DC - Offset In Current and Voltage Waveforms
Authors: Khaled M.EL-Naggar
Abstract:
In power systems, protective relays must filter their inputs to remove undesirable quantities and retain signal quantities of interest. This job must be performed accurate and fast. A new method for filtering the undesirable components such as DC and harmonic components associated with the fundamental system signals. The method is s based on a dynamic filtering algorithm. The filtering algorithm has many advantages over some other classical methods. It can be used as dynamic on-line filter without the need of parameters readjusting as in the case of classic filters. The proposed filter is tested using different signals. Effects of number of samples and sampling window size are discussed. Results obtained are presented and discussed to show the algorithm capabilities.Keywords: Protection, DC-offset, Dynamic Filter, Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760123 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series
Authors: M. H. Fattahi, H. Jahangiri
Abstract:
All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.Keywords: river flow time series, fractal, river networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688122 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579121 Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost
Authors: Antônio P. de Araújo Neto, Ruy D. A. da Silva Neto, Juliana R. de Souza, Salete K. P. de Medeiros, João T. N. de Medeiros
Abstract:
The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15.Keywords: Microcomposites, microparticles tailings of scheelite, PTFE, tribology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583120 CAD-Based Modelling of Surface Roughness in Face Milling
Authors: C. Felho, J. Kundrak
Abstract:
The quality of machined surfaces is an important characteristic of cutting processes and surface roughness has strong effects on the performance of sliding, moving components. The ability to forecast these values for a given process has been of great interests among researchers for a long time. Different modeling procedures and algorithms have been worked-out, and each has its own advantages and drawbacks. A new method will be introduced in this paper which will make it possible to calculate both the profile (2D) and surface (3D) parameters of theoretical roughness in the face milling of plain surfaces. This new method is based on an expediently developed CAD model, and uses a professional program for the roughness evaluation. Cutting experiments were performed on 42CrMo4 specimens in order to validate the accuracy of the model. The results have revealed that the method is able to predict surface roughness with good accuracy.
Keywords: CAD-based modeling, face milling, surface roughness, theoretical roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3069