Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc

Abstract:

Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, frictional heat generation, process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515

References:


[1] J. Gandra, R. M. Miranda, et P. Vilaça, « Performance analysis of friction surfacing », Journal of Materials Processing Technology, vol. 212, no 8, p. 1676‑1686, août 2012, doi: 10.1016/j.jmatprotec.2012.03.013.
[2] F. Khodabakhshi et A. P. Gerlich, « Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review », Journal of Manufacturing Processes, vol. 36, p. 77‑92, déc. 2018, doi: 10.1016/j.jmapro.2018.09.030.
[3] W. M. Thomas et E. D. Nicholas, « Friction stir welding for the transportation industries », Materials & Design, vol. 18, no 4, p. 269‑273, déc. 1997, doi: 10.1016/S0261-3069(97)00062-9.
[4] K. Fraser, « Robust and Efficient Meshfree Solid Thermo-Mechanics Simulation of Friction Stir Welding », p. 359.
[5] M. Iordache, C. Badulescu, D. Iacomi, E. Nitu, et C. Ciuca, « Numerical Simulation of the Friction Stir Welding Process Using Coupled Eulerian Lagrangian Method », IOP Conf. Ser.: Mater. Sci. Eng., vol. 145, p. 022017, août 2016, doi: 10.1088/1757-899X/145/2/022017.
[6] S. Mandal, J. Rice, et A. A. Elmustafa, « Experimental and numerical investigation of the plunge stage in friction stir welding », Journal of Materials Processing Technology, vol. 203, no 1‑3, p. 411‑419, juill. 2008, doi: 10.1016/j.jmatprotec.2007.10.067.
[7] C. D. Cox, B. T. Gibson, A. M. Strauss, et G. E. Cook, « Energy input during friction stir spot welding », Journal of Manufacturing Processes, vol. 16, no 4, p. 479‑484, oct. 2014, doi: 10.1016/j.jmapro.2014.05.007.
[8] B. Lei, Q. Shi, L. Yang, C. Liu, J. Pan, et G. Chen, « Evolution of interfacial contact during low pressure rotary friction welding: A finite element analysis », Journal of Manufacturing Processes, vol. 56, p. 643‑655, août 2020, doi: 10.1016/j.jmapro.2020.05.034.
[9] R. Itterbeek, « Dynamique des systèmes thermiques - Phénomènes thermiques dus aux frottements ».
[10] T. Altan, G. Ngaile, et G. Shen, Éd., Cold and hot forging: fundamentals and applications. Materials Park, OH: ASM International, 2004.
[11] W. C. Emmens, Formability. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-21904-7.
[12] E. Huttunen-Saarivirta, L. Kilpi, T. J. Hakala, J. Metsäjoki, et H. Ronkainen, « Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures », Tribology International, vol. 119, p. 567‑584, mars 2018, doi: 10.1016/j.triboint.2017.11.041.
[13] B. Durand, « Etude expérimentale du frottement entre l’acier et un matériau fragile sous haute vitesse et haute pression », p. 157.
[14] S. Philippon, « Etude expérimentale du frottement sec à grandes vitesses de glissement », 2004.