
Abstract—A neuron can emit spikes in an irregular time basis 

and by averaging over a certain time window one would ignore a lot 

of information. It is known that in the context of fast information 

processing there is no sufficient time to sample an average firing rate 

of the spiking neurons.  The present work shows that the spiking 

neurons are capable of computing the radial basis functions by 

storing the relevant information in the neurons' delays. One of the 

fundamental findings of the this research also is that when using 

overlapping receptive fields to encode the data patterns it increases 

the network’s clustering capacity. The clustering algorithm that is 

discussed here is interesting from computer science and neuroscience 

point of view as well as from a perspective. 

Keywords—Temporal Neurons, RBF Recognition, Perturbation, 

On Line Recognition.

I. INTRODUCTION

RTIFICIAL neural networks (ANNs) whose functioning 

is inspired by some fundamental principles of real 

biological neural networks have proven to be a powerful 

computing paradigm.  Real biological neurons communicate 

through short pulses, called spikes, which terminate at 

different time rates. While firing, the firing rate is considered 

as the relevant information exchanged occasion between 

neurons, where the analog inputs for an artificial neuron are 

interpreted as firing rates.  A spiking neuron is a simplified 

model of the biological neuron, however it is more realistic 

than a threshold gate (perceptron) or a sigmoidal gate. One 

reason for this is that in a network of spiking neurons the 

input, output and internal representation of information is 

more closely related to that of a biological network. This 

representation allows for time to be used as a computational 

resource and enhance neural network performance.  It has 

been shown that such a network is computationally more 

powerful than a network of threshold or sigmoid gates.  

Because of this high efficiency many researchers have 

recommended to use such techniques not only for off-line real 

data classification but also for on-line high rate data 

classification.  However; learning algorithms for spiking 

neural networks are still not adequate to serve this purpose  
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[1,2]. 

In order to understand the neural encode we have to 

investigate the temporal structure of the spiking neurons [2-4], 

where neurobiological findings have confirmed such 

dependency and have shown that the sign and strength of the 

change depends on the timing of the multi-spike systems [3-

7].  

The importance of the timing of the first spike has been 

discussed by many authors in which they were able to show 

that humans can process visual patterns in 150 ms [8]. Within 

this time it is hard to imagine that the neurons may sample 

firing rates, since there are only about 10 synaptic stages 

involved. Neurons participating in such computations usually 

have a firing rate of less than 100 Hz and hence 10 ms, are not 

sufficient to estimate the current firing rate of some spiking 

neuron [9]. 

So far there is no much information known about the 

possible computational mechanisms on the basis of the timing 

of single spikes. Some fundamental results have been 

provided by Maass in which he characterized the 

computational power of SNNs and showed that the timing of 

spikes can be used to simulate sigmoidal gates with SNNs 

[10,11].  Other studies, by Allipi et al. investigated the 

correlation between the accuracy of the system versus its 

complexity and its influence on off-line and on-line data 

analysis [12]. 

On the basis of these principles, in the present study we 

show how methods originally designed for artificial neural 

networks like competitive learning, self-organizing behavior 

and radial basis functions (RBF) can be realized.  Within this 

context we investigated the effect of using inner time 

dependence for firing which shows promising results in terms 

of real time (on line) execution time for recognition and less 

resources for that training sets. 

II. CLASSIFICATION OF NEURON’S ENCODES

One can classify the neural information encoding by three 

different approaches: the first is the rate coding where the 

essential information is encoded in the firing rates and 

averaged over time or over several repetitions of the event.  

The second,  is the population coding, where information can 

be distinguished by the activity of different populations of 

neurons where a neuron may participate at several pools.  And 
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the third, is the temporal coding, where the timing of single 

spikes is used to encode information. 

In the present study we will focus on the temporal coding in 

which relevant information could be represented.  In this 

context we consider that the firing rates of neurons are relative 

to the stimulus onset such that the closer a neuron fires to the 

onset the stronger the stimulation can take effect [13].   In 

previous studies, researchers considered only the first spike of 

a neuron carries relevant information in which  the neuron is 

shut off by some additional inhibitory input after its firing 

[14,15]. 

In the current study we introduce new novel scheme that is 

composed of two new techniques; the first is that all the 

neurons are participating in the firing but according to a 

normalized time dependent correlation function.  In that sense 

the overall firing behavior is a superposition of the firing rates 

from the neurons which is more elastic to real life.  The 

second, is that the firing rates in total is calculated from all 

neurons participating in the event an weighted as perturbation 

terms, in which the order of perturbation depends on the 

location of the firing neuron from the principle neuron, i.e., 

the most principle participating one.  The perturbation factor 

is relative to the spatial distance of the designated neuron from 

the principal one. 

A. Modified Model for Temporal Neurons 

The state of neuron j is described by the variable xj(t),

which models the neuron’s membrane potential (Excitatory 

Post Synaptic Potential-ESPS) at time t. A spike is generated 

whenever xj(t) crosses the threshold and },,,{
321

jjjj ttt is

the set of firing times of neuron j.  We can model the effect of 

an incoming spike on the ESPS by in which the first term is 

the normalized Gaussian Probability Integral 

0,0

0,1expexp2
)(

0

2 dtt
t

 (1.a) 

where  is the post time to the spike effect and  is the time to 

the peak of the post synaptic reaction.  Also can argue that: 

0

2

0

2

,

exp2exp2lim dttdtt
very smallt

, (1.b) 

Different approaches have used the second bracket only of the 

right hand side, which is not physically correct for the 

potential function normalization.  It is obvious that equation 

(1.a) is more physically acceptable because it represents a 

normalized potential function. 

Assuming that the input is of a vector form and defined as: 

mxx ,,x
1  (2) 

where

jij tmjtx -1|max (3).

When the neuron j receives an input from a set of neurons 

marked as j, the membrane potential becomes the weighted 

sum of EPSP’s caused by the neurons from j. In this case

i j
k
j

j t

k

ij

k

jijj dttwtx ))(()(
 (4) 

where wij is the synaptic efficiency (i.e., weights) between 

neurons i and j, k

ijd  is the delay from the occurrence of a spike 

in neuron j and the beginning of its effect on neuron i and

)(
k

ij

k

j dt  is the time when the kth
 spike from neuron j started 

affecting neuron i.

B. RBF and Temporal Data Encoding 

Radial Basis Functions (RBF) represents an approach for 

the universal function approximation.  RBFs were first used in 

solving multivariate interpolation problems and numerical 

analysis.  Its prospect is similar in neural network 

applications, where the training and query targets are rather 

continuous.  RBF network performs a local mapping (i.e., 

only inputs near specific receptive fields will produce an 

activation)., where, the units (in the hidden layer) receiving 

the direct input from a signal may see only a portion of the 

input pattern, which is further used in reconstructing a surface 

in a multidimensional space that furnishes the best fit to the 

training data. 

RBF models the response function using the composition of 

sigmoid-cliff functions - for a classification problem; this 

corresponds to dividing the pattern space up using circles or 

(more generally) hyperspheres. A hypersphere is characterized 

by its center and radius. More generally, just as an RBF unit 

responds (non-linearly) to the distance of points from the line 

of the sigmoid-cliff, in a radial basis function network units 

respond (non-linearly) to the distance of points from the 

center represented by the radial unit [16-18]. The response 

surface of a single radial unit is therefore a Gaussian function, 

peaked at the center, and descending outwards in which the 

sigmoid curves can be altered, so can the slope of the radial 

unit's Gaussian. See the next illustration below. 

RBF, therefore, has a hidden layer of radial units, each 

actually modeling a Gaussian response surface. Since these 

functions are nonlinear, it is not actually necessary to have 

more than one hidden layer to model any shape of function in 

which sufficient radial units will always be enough to model 

any function. The remaining question is how to combine the 

hidden radial unit outputs into the network outputs? It turns 

out to be quite sufficient to use a linear combination of these 

outputs (i.e., a weighted sum of the Gaussians) to model any 

nonlinear function. The standard RBF has an output layer 

containing dot product units with identity activation function 

[18,19].  In the present study we used instead a nonlinear 

combination weighted by perturbation terms related to the 

distance from the principle firing neuron. 

Assume that m-dimensional input patterns (x1,...,xm) are 

encoded with sensory neurons  v1,...,vm which are the 

constituents of the networks’ input that have an n-dimensional 

output neurons (u1,...,un) (see Figure a). In the simplest case 

each input neuron vi connections to the RBF neuron uj with 

weights wij and delays
k

ijd .
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In the present study we consider the encoding scheme 

where each input neuron ui fires exactly once at time ti during 

the encoding interval )](,[ iti tt , i.e., with 
t
 is a constant 

time step, which is encoded relative to the first spike in the 

coding interval. 

u
1

ui

un

v
1

v
j

v
m

f ast

f ast

slow

slow

1,
1

i ji j dw

2,
2

i ji j dw

Ddw ij
D
ij ,

i j

ti

1

i jw
j

d
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i jw
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d

k
ijw

j
d

2
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Figure a.  The SNN encoding architecture 

We can define the center of an RBF neuron (which is 

symmetric around the centre) cj by the vector 

mjjj xxx
,

,, (5)

where

1|min
,

middx imimmj
 (6) 

Assuming that the RBF neuron vj is associated with a m-

dimensional vector as  in equation (5). In that sum we define 

the m-dimensional vector as the synaptic weights of the 

neuron. Each coordinate in 
c

j  is a weighted average of the 

delays from the matching input coordinate as in equation (4). 

The active synapse from j  will be the one whose delay 

defined as 

otherwise

max

,0

,
i

jd

ij

dw
w (7)

The center of such a neuron is mirror image of D

j
 and the 

response time to input patterns is symmetric around that center 

so that this neuron realizes a RBF. 

For each pair of sensory neuron ui that is connected to a single 

layer of n spiking neurons and RBF neuron vj, there exist a set 

of D independent synapses. Taking into account the multiple 

synapses and constant delays, the weights of these synapses 

are
1

ijw ,
2

ijw ,...
D

ijw  and the delays are 1 ms, 2 ms, ... and D

ms, respectively. In this case xj(t) is redefined as 

j j
k
j

j t

D

d

k

ij

k

j

d

ijj dttwtx
1

))(()(  (8) 

The input x is close to the center cj of an RBF neuron vj if the 

spikes of the input neurons reach the soma of vj due to the 

corresponding delays at similar times, i.e., if ||cx|| j is

small.  This is basically a parallel approach to that was 

introduced by Hopfield in 1995 in which he considered the 

case where the input vector is close enough to the center of an 

RBF neuron to make vj fire [20]. 
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Figure b: Dependence of the firing time of an RBF neuron vj

If the distance between x and vj is too large, vj does not fire at 

all. If for some input vector x the difference ||cx|| j  is small 

enough for various j to make vj to fire then the RBF neuron 

whose center is closest to x fires first. In this case a set of such 

RBF neurons can be used to separate inputs into various 

clusters.

Figure b, shows the dependence of the firing time of an 

RBF neuron vj on the distance of the input vector x to the 

center cj.  For this simulation 1200 uniformly distributed 

inputs 
1200

300 ms,x are presented to vj with equal weights 

and delays uniformly distributed over ms300, . Crosses 

indicate the case that the RBF neuron has not fired [21]. 

The delays between spikes in such an input pattern will be 

evened out by the delays in the synapses causing vj to react to 

the all incoming spikes at the same time. When comparing the 

reaction of vj to an input pattern which is at its center and an 

input pattern which is slightly off its center we find that the 

first pattern causes a higher peak in vj’s membrane potential 

and the membrane potential crosses the threshold earlier. 

C. Temporal Neurons and RBF Recognition 

In Figure c, the solid line is the response to a pattern that is 

directly at the center of the RBF, the dashed line is the 

response to an input slightly off the center and the other two 

patterns are farther away. If the threshold is set to 10, the 

neuron will react fastest to the pattern which is at the center. 

When presented with the pattern farthest from the center 

(dashed-dotted line) it will not reach the threshold, and 

therefore not fired at all.  The farther away the input pattern is 

from the center the later the neuron will reach the threshold. 

When a pattern is very different from the center the peak will 

be lower then the threshold and no spike will be generated. 

The neuron realizes a function whose input is an m-
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dimensional pattern and output is the time till it emits a spike-

if at all-this function is symmetric around the center defined 

and therefore it is a radial basis function.  
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Figure c:  Membrane potential as a result of four 15-dimensional input 

patterns

D. Learning RBF and Clustering with Temporal Neurons 

The learning goal of the network is to have one RBF neuron 

related to each cluster so that when an input pattern from that 

cluster is exposed to the network, only the related neuron will 

fire. Since we have inhibitory synapses between the neurons, 

it is enough that the correct neuron will fire first. In order to 

achieve that, the weights of the spiking neurons will be shifted 

during learning so that they will be able to realize RBFs 

whose centers are the centers of the clusters. 

The learning rule (which is a variant of the Hebb law) is 

applied to the synaptic weights of the neuron that is fired 

when the input is fed to the network. Synapses which 

contributed to the neuron’s firing are strengthened and 

synapses which did not contribute are weakened by 

perturbation. The synapses that contributed are those who 

started affecting the postsynaptic neuron (taking into account 

the synaptic delay) slightly before the neuron actually crossed 

the threshold.  The change in the synaptic weight is given by 

the following learning rule 

))((
kk

j

d

ij iji
dttw  (9) 

where determines the learning rate.  The learning function 

will have the form 

b
c

bt
2

2
)t(

exp)1()(
 (10) 

where b is the minimal value, c is the location of the peak,  is 

the width of the distribution. 

We found out that with time difference of exactly c ms

between the spikes causes maximal strengthening of the 

synaptic weight up to the width of the distribution (higher or 

lower) causes a smaller strengthening and weakens the 

synaptic weight.  This is a very good result that guided us to 

the best resonance value for the system parameters.  With the 

use of this above model data is successfully clustered with 

results similar to [22]. 

III. INPUT ENCODING WITH RECEPTIVE FIELDS

In order to encode the sensory input neurons we should 

look for an efficient encoding technique. Sensory input in live 

organisms are often encoded with overlapping receptive 

fields, for example touching the skin at a certain area may 

cause several sensory neurons to fire at different rates. This 

technique is used to encode input patterns so that it is possible 

to successfully cluster more complicated data sets. 

When using receptive fields, input is not encoded by using 

just one sensory neuron for each data coordinate. Instead for 

each coordinate, several receptive field neurons are used to 

encode the data. Each of the receptive fields fires with a short 

delay if the value of that coordinate is close to its center and 

with a longer delay for values farther from the center.  And it 

does not fire at all if the value is too far from the center. The 

centers of the receptive fields are evenly distributed within the 

possible range of values. 

When a pattern is introduced to the system each receptive 

field calculates the value of a gaussian function and value of 

the input at the coordinate will correlate with each other. The 

gaussian function for each receptive field is given by equation 

(10) when using 

= rf  M/(y-2) (11) 

where  is the width of the receptive field, M is the maximal 

value of the input and y the number of receptive fields and rf

a parameter. 

IV. MODEL IMPLEMENTATION

The model was implemented by RBF++ using the three 

classes ReceptiveFiled, RBFneuron and Network Parameters’ 

Monitoring [21].  The algorithm contains main three modules.  

The first one is data set file creation module, the second is 

data set file testing module and the third one is the distance 

from the centre, response time testing and running module. 

A pre-requisite for the system is to define the values for 

parameters discussed before as: 

Maximal weight value, The maximal weight is calculated 

so that after learning the active synapses that are left have 

enough weight to cause the RBF neurons to fire. There is 

also a minimal weight which is set to zero in which no 

inhibitory synapses are allowed. 

Saturation function that is needed in order to keep the 

weights within the realistic range [0,wmax].  This function 

causes the synaptic weight to change at a slower rate when 

close to 0 or max.

Initial weight value where the weights are initiated 

randomly but they must be high enough to cause some 

neuron to fire for every pattern and low enough so that all 

the input spikes are necessary in order to cause a RBF 

neuron to fire. If not all input spike are necessary a partial 

pattern will be learned and several clusters with a common 

sub-pattern will be identified by one of the neurons. 

An input (data-point) to the network is coded by a pattern 

of firing times within a coding interval T and each input 

neuron is required to fire at most once during this coding 

interval. In our experiments, we set T to [0-9] ms and delays 
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dk to 1 - 30 ms in 1 ms intervals (m = 31). For the reported 

simulations, the parameter values for the learning function are 

set to: b =  0:2.3, c = -2:70,  = 1:2.64,  = 0:0018 and wmax = 

2:45. To model the (strictly excitatory) post-synaptic 

potentials, we used an -function: 

]1[exp)(
t

T

t
t (12)

where T is set to be 2.0 ms, effectively implementing leaky-

integrate-and-fire spiking neurons. 

V. RESULTS AND CONCLUSION

Throughout this work we incorporated receptive fields 

along with the distance from the center versus the firing time 

function of the RBF neurons under test. A single spiking 

neuron with one active synapse from each sensory neuron is 

stimulated with different input patterns and the time of firing 

is measured and compared to the distance of the patterns from 

the neuron’s center. Figure d shows the results of this run, in 

which the spike time is measured relative to the minimal 

response time. Spike time “-1” indicates that the neuron did 

not fire as a result of that pattern. 
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Figure d:  firing time of the RBF neurons versus distance of the input 

patterns from the RBF center. 
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Figure e: The Gaussian receptive fields 

The value of the Gaussian (between 0 and 1) is normalized 

to a value less than 1 and the result is multiplied by the 

maximal delay to the delay of the receptive field to that input. 

If the value of the Gaussian is too low no spike will be emitted 

by that receptive field.  In Figure e, the vertical line indicates 

an input which causes three receptive fields to fire, the central 

receptive field will fire almost immediately and the ones to its 

left and right will fire after a longer delay of value 80% and 

90% of the maximal delay. 

In table I, shows the results for different data sets.  We run 

the algorithm for different values of dimensions for the data 

sets.  It shows very promising results in terms of the standard 

deviation relative to the number of data points. 

TABLE I

DATA SET PARAMETERS USED FOR NNS MODEL TESTING

Dimension # of 

Clusters

Range

ms

Std

ms

# of 

patterns

2 20 0 - 30 0.2 2500 

10 20 0 - 30 0.22 2500 

20 20 0 - 30 0.23 3000 

40 20 0 - 30 0.24 2000 

60 20 0 - 30 0.26 3000 

80 20 0 - 30 0.28 3000 

4-Iris data 12   800 

Figure f: Plot of the 2-dimensional data set results for the NNS testing. 

In Figure f we shows the relation for the first row of the 

table, and it is obvious that it gives a very good results to 

discriminate and cluster data points in a very small response 

time. 

In all the simulations 30% of the data was used for learning. 

Testing was performed on the full data sets.  In the artificial 

data sets 100% correct classification was achieved. In the iris 

data set over 95% success was achieved.  So we can see that 

spiking neurons, receiving temporally encoded inputs can 

compute radial basis function to an excellent accuracy.  This is 

feasible via sorting the relevant information in their delays.  In 

the current study we showed how our models introduced 

excellent results with simpler buildup than the previous 

studies. 

FUTURE WORK

Currently we are studying applying this technique to more 

NNS application oriented problems.  Of main interest to us to 

benefit from the short time convergence into correct clustering 

and very small standard deviation.  Namely applying this for 

intrusion detection systems as extensions to our previous 

efforts in that field [22,23]. 
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