Search results for: Fibre Reinforced Concrete
908 Waterproofing Agent in Concrete for Tensile Improvement
Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan
Abstract:
In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.
Keywords: High tensile concrete, waterproofing agent, concrete, rheology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437907 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading
Authors: A. Gherbi, L. Dahmani, A. Boudjemia
Abstract:
This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.
Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275906 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns
Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally
Abstract:
This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.
Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894905 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.
Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791904 Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete
Authors: Piotr-Robert Lazik, Harald Garrecht
Abstract:
Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO2 in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete.Keywords: Wood ashes, fly ashes, electric filter, replacement, concrete technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616903 Mechanical Properties of Ultra High Performance Concrete
Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer
Abstract:
A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10595902 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches
Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez
Abstract:
Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.
Keywords: Structural reliability, reinforced concrete bridges, mixing approaches, point estimate method, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416901 Seismic Behavior of Self-Balancing Post-Tensioned Reinforced Concrete Spatial Structure
Authors: Mircea Pastrav, Horia Constantinescu
Abstract:
The construction industry is currently trying to develop sustainable reinforced concrete structures. In trying to aid in the effort, the research presented in this paper aims to prove the efficiency of modified special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members. This aim is due to the fact that current design standards do not cover the spatial design of moment frame structures assembled by post-tensioning with special hybrid joints. This lack of standardization is coupled with the fact that previous experimental programs, available in scientific literature, deal mainly with plane structures and offer little information regarding spatial behavior. A spatial model of a modified hybrid moment frame is experimentally analyzed. The experimental results of a natural scale model test of a corner column-beams sub-structure, cut from an actual multilevel building tested to seismic type loading are presented in order to highlight the behavior of this type of structure. The test is performed under alternative cycles of imposed lateral displacements, up to a storey drift ratio of 0.035. Seismic response of the spatial model is discussed considering the acceptance criteria for reinforced concrete frame structures designed based on experimental tests, as well as some of its major sustainability features. The results obtained show an overall excellent behavior of the system. The joint detailing allows for quick and cheap repairs after an accidental event and a self-balancing behavior of the system that ensures it can be used almost immediately after an accidental event it.
Keywords: Modified hybrid joint, seismic type loading response, self-balancing structure, acceptance criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163900 Experimental Study of Different Types of Concrete in Uniaxial Compression Test
Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh
Abstract:
Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.
Keywords: Polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165899 RF Permeability Test in SOC Structure for Establishing USN(Ubiquitous Sensor Network)
Authors: Byung – wan Jo, Jung – hoon Park, Jang - wook Kim
Abstract:
Recently, as information industry and mobile communication technology are developing, this study is conducted on the new concept of intelligent structures and maintenance techniques that applied wireless sensor network, USN (Ubiquitous Sensor Network), to social infrastructures such as civil and architectural structures on the basis of the concept of Ubiquitous Computing that invisibly provides human life with computing, along with mutually cooperating, compromising and connecting networks each other by having computers within all objects around us. Therefore, the purpose of this study is to investigate the capability of wireless communication of sensor node embedded in reinforced concrete structure with a basic experiment on an electric wave permeability of sensor node by fabricating molding with variables of concrete thickness and steel bars that are mostly used in constructing structures to determine the feasibility of application to constructing structures with USN. At this time, with putting the pitches of steel bars, the thickness of concrete placed, and the intensity of RF signal of a transmitter-receiver as variables and when wireless communication module was installed inside, the possible communication distance of plain concrete and the possible communication distance by the pitches of steel bars was measured in the horizontal and vertical direction respectively. Besides, for the precise measurement of diminution of an electric wave, the magnitude of an electric wave in the range of used frequencies was measured by using Spectrum Analyzer. The phenomenon of diminution of an electric wave was numerically analyzed and the effect of the length of wavelength of frequencies was analyzed by the properties of a frequency band area. As a result of studying the feasibility of an application to constructing structures with wireless sensor, in case of plain concrete, it shows 45cm for the depth of permeability and in case of reinforced concrete with the pitches of 5cm, it shows 37cm and 45cm for the pitches of 15cm.Keywords: Ubiquitous, Concrete, Permeability, Wireless, Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614898 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344897 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites
Authors: Siong W. Lee, Kang H. Tan, En H. Yang
Abstract:
This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.Keywords: Bond stress, high performance fiber reinforced cement composites, slip, strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284896 Prospective Use of Rice Husk Ash to Produce Concrete in India
Authors: Kalyan Kumar Moulick
Abstract:
In this paper, the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. Experiments conducted with RHA obtained from West Bengal, India; to replace cement partially to produce concrete of grade M10, M15, M20, M25 and M30. The concrete produced in the laboratory by replacing cement by 5%, 10%, 15%, 20%, 25% and 30% RHA. Compressive strength tests carried out to determine the strength of concrete. Cost analysis and comparison done to show the cost effectiveness of RHA Concrete. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India; which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement.
Keywords: Cement replacement, Concrete, Environmental friendly, Rice Husk Ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360895 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis
Authors: Holger Keitel
Abstract:
The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.
Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539894 Insights into Smoothies with High Levels of Fibre and Polyphenols: Factors Influencing Chemical, Rheological and Sensory Properties
Authors: Dongxiao Sun-Waterhouse, Shiji Nair, Reginald Wibisono, Sandhya S. Wadhwa, Carl Massarotto, Duncan I. Hedderley, Jing Zhou, Sara R. Jaeger, Virginia Corrigan
Abstract:
Attempts to add fibre and polyphenols (PPs) into popular beverages present challenges related to the properties of finished products such as smoothies. Consumer acceptability, viscosity and phenolic composition of smoothies containing high levels of fruit fibre (2.5-7.5 g per 300 mL serve) and PPs (250-750 mg per 300 mL serve) were examined. The changes in total extractable PP, vitamin C content, and colour of selected smoothies over a storage stability trial (4°C, 14 days) were compared. A set of acidic aqueous model beverages were prepared to further examine the effect of two different heat treatments on the stability and extractability of PPs. Results show that overall consumer acceptability of high fibre and PP smoothies was low, with average hedonic scores ranging from 3.9 to 6.4 (on a 1-9 scale). Flavour, texture and overall acceptability decreased as fibre and polyphenol contents increased, with fibre content exerting a stronger effect. Higher fibre content resulted in greater viscosity, with an elevated PP content increasing viscosity only slightly. The presence of fibre also aided the stability and extractability of PPs after heating. A reduction of extractable PPs, vitamin C content and colour intensity of smoothies was observed after a 14-day storage period at 4°C. Two heat treatments (75°C for 45 min or 85°C for 1 min) that are normally used for beverage production, did not cause significant reduction of total extracted PPs. It is clear that high levels of added fibre and PPs greatly influence the consumer appeal of smoothies, suggesting the need to develop novel formulation and processing methods if a satisfactory functional beverage is to be developed incorporating these ingredients.Keywords: Apple fibre, apple and blackcurrant polyphenols, consumer acceptability, functional foods, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4340893 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949892 Performance of Bridge Approach Slabs in Bridge Construction: A Case Study
Authors: Aurora Cerri, Niko Pullojani
Abstract:
Long-term differential settlement between the bridge structure and the bridge embankment typically results in an abrupt grade change, causing driver discomfort, impairing driver safety, and exerting a potentially excessive impact traffic loading on the abutment. This paper has analysed a case of study showing the effect of an approaching slab realized in a bridge constructed at Tirane-Elbasan Motorway. The layer thickness under the slab is modeled as homogenous, the slab is a reinforced concrete structure and over that the asphaltic layers take place. Analysis indicates that reinforced concrete approaching slab distributes the stresses quite uniformly into the road fill layers and settlements varies in a range less than 2.50 cm in the total slab length of 6.00 m with a maximum slope of 1/240. Results taken from analytical analysis are compared with topographic measurements done on field and they carry great similarities.Keywords: Approach slab, bridge, road pavement, differential settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179891 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric
Authors: C. W. Kan
Abstract:
Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.Keywords: Learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391890 Lateral Behavior of Concrete
Authors: Ali Khajeh Samani, Mario M. Attard
Abstract:
Lateral expansion is a factor defining the level of confinement in reinforced concrete columns. Therefore, predicting the lateral strain relationship with axial strain becomes an important issue. Measuring lateral strains in experiments is difficult and only few report experimental lateral strains. Among the existing analytical formulations, two recent models are compared with available test results in this paper with shortcomings highlighted. A new analytical model is proposed here for lateral strain axial strain relationship and is based on the supposition that the concrete behaves linear elastic in the early stages of loading and then nonlinear hardening up to the peak stress and then volumetric expansion. The proposal for the lateral strain axial strain relationship after the peak stress is mainly based on the hypothesis that the plastic lateral strain varies linearly with the plastic axial strain and it is shown that this is related to the lateral confinement level.Keywords: Confined Concrete, Lateral Strain, Triaxial test, Postpeak behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995889 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups
Authors: Guray Arslan, Riza S. O. Keskin
Abstract:
Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699888 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.
Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288887 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load
Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche
Abstract:
In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.
Keywords: Performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258886 The Overload Behaviour of Reinforced Concrete Flexural Members
Authors: Angelo Thurairajah
Abstract:
Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.
Keywords: Ductility, softening, ultimate deflection, overload behaviour, moment redistribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397885 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials
Authors: José Julio de C. Pituba
Abstract:
This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Keywords: Damage model, plastic strain, unilateral effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829884 Behavior of RC Buildings to Tsunami Action
Authors: Carlos H. Cuadra
Abstract:
The present report describes the characteristics of damages and behavior of reinforced concrete buildings during the tsunami action. The discussion is based on the field damage survey in selected cities located on the coast of the zone affected by the Great East Japan Earthquake on March 11, 2011. This earthquake is the most powerful know earthquake that has hit Japan with a magnitude 9.0 and with epicenter located at 129 km of Sendai city (off the coast). The earthquake triggered a destructive tsunami with run up height of up to 40 meters that mainly affect cities located on the Pacific Ocean coast of the Tohoku region (north-east region of Japan). Reinforced concrete buildings in general resist the tsunami without collapse however the non-structural elements like panels and ceilings were severely damaged. The analysis of damages has permitted to understand the behavior of RC buildings under tsunami attack, and has also permitted to establish recommendations for their use to take refuge from tsunami in places where natural topography makes impossible to reach hilltops or other safer places.Keywords: tsunami, RC buildings, East Japan Earthquake, seismic damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486883 Repair of Concrete Structures with SCC
Authors: F. Kharchi, M. Benhadji, O. Bouksani
Abstract:
The objective of this work is to study the influence of the properties of the substrate on the retrofit (thin repair) of damaged concrete elements, with the SCC. Fluidity, principal characteristic of the SCC, would enable it to cover and adhere to the concrete to be repaired. Two aspects of repair are considered, the bond (Adhesion) and the tensile strength and the cracking. The investigation is experimental; It was conducted over test specimens made up of ordinary concrete prepared and hardened in advance (the material to be repaired) over which a self compacting concrete layer is cast. Three alternatives of SC concrete and one ordinary concrete (comparison) were tested. It appears that the self-compacting concrete constitutes a good material for repairing. It follows perfectly the surfaces- forms to be repaired and allows a perfect bond. Fracture tests made on specimens of self-compacting concrete show a brittle behaviour. However when a small percentage of fibres is added, the resistance to cracking is very much improve.
Keywords: Adhesion, concrete, experimental, repair, self-compacting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858882 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns
Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan
Abstract:
Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.
Keywords: Composite, columns, experimental, finite element, fully encased, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861881 Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types
Authors: Z. Salleh, M. N. Berhan, Koay Mei Hyie, D. H. Isaac
Abstract:
Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.
Keywords: Kenaf, Fibreglass, Hybrid Composite, Tensile Strength, Tensile Modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184880 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites
Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam
Abstract:
E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.Keywords: E-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805879 A Review on Concrete Structures in Fire
Abstract:
Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.Keywords: Concrete, fire, spalling, temperature, compressive strength, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510