
1 

Abstract—E-glass-epoxy laminated composites having 
different fiber volume fractions (40, 50, 60 and 70) were fabricated 
with and without the addition of nanoclay. Flexural strength and 
tensile strength of the composite laminates were determined. It was 
observed that, with increasing the fiber volume fraction (Vf) of 
fiber from 40 to 60, the ability of nanoclay to enhance the tensile 
and flexural strength of E-glass-epoxy composites decreases 
significantly. At 70Vf, the tensile and flexural strength of the 
nanoclay reinforced E-glass-epoxy were found to be lowest when 
compared to the E-glass-epoxy composite made without the 
addition of nanoclay. Based on the obtained data and 
microstructure of the tested samples, plausible mechanism for the 
observed trends has been proposed. The enhanced mechanical 
properties for nanoclay reinforced E-glass-epoxy composites for 
40-60 Vf, due to higher interface toughness coupled with strong 
interfilament bonding may have ensured the homogeneous load 
distribution across all the glass fibers. Results in the decrease in 
mechanical properties at 70Vf, may be due to the inability of the 
matrix to bind the nanoclay and glass-fibers. 

 

Keywords—E-glass-epoxy composite laminates, fiber volume 
fraction, e-glass fiber, mechanical properties, delamination. 

I. INTRODUCTION 

HERE is a great interest to use low-weight and high-
performance composites to replace traditional metals 

due to high specific strength and significant weight 
reduction. Among various fiber reinforced composites, due 
to the cost effectiveness, glass fiber reinforced epoxy 
composites (E-glass–epoxy) are widely used in various 
applications, like armor tanks, automobile bodies and boat 
hulls [1], [2]. However, in each of these applications, a 
particular property like impact resistance, tensile strength or 
flexural plays a critical role. There is an urge to enhance 
these properties of E-glass-epoxy composites, to make them 
more effective for various applications. Over the years, 
many researchers are exploring the possibility of employing 
various additives like nanoclay, carbon nanofibere (CNFs), 
carbon nanotubes (CNTs) etc. to enhance the tensile, 
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flexural strength and impact resistance of the E-glass-epoxy 
composites [3]-[7]. Among all these, organically modified 
(octadecyl amine) montimorillonite nanoclay has better 
compatibility with both E-glass fabric and epoxy matrix. 
Especially, interface compatibility of the nanoclay with the 
epoxy matrix arises from the amino groups present on their 
surface [8]. It is also reported that, amino functional groups 
present on carbon nanomaterials (CNFs or CNTs) be able 
to react with epoxy functional groups present in the matrix 
and therefore form a good bond with the epoxy. matrix [9]. 
In common, enhancement in the tensile and flexural 
properties of E-glass-epoxy composites due to the addition 
of nanoclay is ascribed to the increased crosslink density, 
toughness of matrix and strong fibre–matrix interface [9], 
[10]. Though, fiber volume fraction (Vf) of the composite 
has a strong effect on the fibre–matrix interface area. 
Therefore, the degree of the tensile and flexural strength 
improvement due to the nanoclay addition in E-glass-epoxy 
composites depends on the Vf of the composite. For 
example, tensile strength improvements of fibre reinforced 
epoxy composites due to the addition of nanomaterials is 
reported up to as high as 28%, and also as low as 7% [11], 
[12]. So far, it has not been established that, how nanoclay 
addition influences the tensile and flexural strength of the 
GFRPs/E-glass-epoxy composite having different Vf.  

The present study is aimed to understand how 
strengthening mechanisms of E-glass fiber in E-glass-
epoxy composites changes as the fiber volume fraction of 
the E-glass-epoxy composite changes. In present study we 
vary the Vf from 40-70%, due to the composite used in the 
majority of the realistic applications commonly lies in this 
range only.  

II. EXPERIMENTAL 

A. Raw Materials 

Epoxy resin (commercial name LY556, Huntsman 
Advanced Materials (India) Pvt. Limited, Mumbai) made 
from Bisphenol A and epichlorohydrin along with diamine 
based curing agent (DETDA, commercial name HY 5200, 
Huntsman Advanced Materials (India) Pvt. Limited, 
Mumbai) were used as the matrix phase. E-glass fabric with 
plain-woven (360 gsm, UTS of 40 GPa) was used as the 
main reinforcement. Nanoclay used in this study is 
octadecylamine modified montimorillonite (Nanomer 
I.30E) procured from M/s Nanocor Inc (USA). 
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