Search results for: double gate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 534

Search results for: double gate

384 Single Zone Model for HCCI Engine Fueled with n-Heptane

Authors: Thanapiyawanit Bancha, Lu Jau-Huai

Abstract:

In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.

Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
383 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects

Authors: Y. Outaleb, K. Bouhadef, O. Rahli

Abstract:

Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.

Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
382 Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

Authors: Q. Zafar, R. Akram, Kh.S. Karimov, T.A. Khan, M. Farooq, M.M. Tahir

Abstract:

In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.

Keywords: Copper Phthalocyanine, Metal-Semiconductor Schottky Junction, Organic Field Effect Transistor, Switching effect, Temperature Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
381 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, PLL megafunction, FPGA, time resolution, digitally-controlled DC-DC switching converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
380 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
379 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan

Abstract:

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
378 Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities

Authors: Shiferaw R. Jufar, Rong F. Huang, Ching M. Hsu

Abstract:

The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.

Keywords: Acoustic excitation, double–concentric jets, flow control, swirling jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
377 Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: Gerda, double beta decay, germanium, LNGS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
376 Library Aware Power Conscious Realization of Complementary Boolean Functions

Authors: Padmanabhan Balasubramanian, C. Ardil

Abstract:

In this paper, we consider the problem of logic simplification for a special class of logic functions, namely complementary Boolean functions (CBF), targeting low power implementation using static CMOS logic style. The functions are uniquely characterized by the presence of terms, where for a canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and hence | D(Mj) ∪ D(Mk) | = 0. Here, 'mk' and 'Mk' represent a minterm and maxterm respectively. We compare the circuits minimized with our proposed method with those corresponding to factored Reed-Muller (f-RM) form, factored Pseudo Kronecker Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller (f-GRM) form. We have opted for algebraic factorization of the Reed-Muller (RM) form and its different variants, using the factorization rules of [1], as it is simple and requires much less CPU execution time compared to Boolean factorization operations. This technique has enabled us to greatly reduce the literal count as well as the gate count needed for such RM realizations, which are generally prone to consuming more cells and subsequently more power consumption. However, this leads to a drawback in terms of the design-for-test attribute associated with the various RM forms. Though we still preserve the definition of those forms viz. realizing such functionality with only select types of logic gates (AND gate and XOR gate), the structural integrity of the logic levels is not preserved. This would consequently alter the testability properties of such circuits i.e. it may increase/decrease/maintain the same number of test input vectors needed for their exhaustive testability, subsequently affecting their generalized test vector computation. We do not consider the issue of design-for-testability here, but, instead focus on the power consumption of the final logic implementation, after realization with a conventional CMOS process technology (0.35 micron TSMC process). The quality of the resulting circuits evaluated on the basis of an established cost metric viz., power consumption, demonstrate average savings by 26.79% for the samples considered in this work, besides reduction in number of gates and input literals by 39.66% and 12.98% respectively, in comparison with other factored RM forms.

Keywords: Reed-Muller forms, Logic function, Hammingdistance, Algebraic factorization, Low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
375 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: Amplifier class D, FPGA, protective relay, tester.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
374 Static and Dynamic Characteristics of an Appropriated and Recessed n-GaN/AlGaN/GaN HEMT

Authors: A. Hamdoune, M. Abdelmoumene, A. Hamroun

Abstract:

The objective of this paper is to simulate static I-V and dynamic characteristics of an appropriated and recessed n-GaN/AlxGa1-xN/GaN high electron mobility (HEMT). Using SILVACO TCAD device simulation, and optimized technological parameters; we calculate the drain-source current (lDS) as a function of the drain-source voltage (VDS) for different values ​​of the gate-source voltage (VGS), and the drain-source current (lDS) depending on the gate-source voltage (VGS) for a drain-source voltage (VDS) of 20 V, for various temperatures. Then, we calculate the cut-off frequency and the maximum oscillation frequency for different temperatures.

We obtain a high drain-current equal to 60 mA, a low knee voltage (Vknee) of 2 V, a high pinch-off voltage (VGS0) of 53.5 V, a transconductance greater than 600 mS/mm, a cut-off frequency (fT) of about 330 GHz, and a maximum oscillation frequency (fmax) of about 1 THz.

Keywords: n-GaN/AlGaN/GaN HEMT, drain-source current (IDS), transconductance (gm), cut-off frequency (fT), maximum oscillation frequency (fmax).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
373 Study on the Seismic Response of Slope under Pulse-Like Ground Motion

Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah

Abstract:

Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is well known to be stronger than the single pulse. This research has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a stronger dynamic response.

Keywords: Velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
372 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
371 Dam Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran

Authors: Ali Heidari

Abstract:

This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez Dam located in the Dez Rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez Dam operation data show that in one of the best flood control records, 17% of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.

Keywords: Dam operation, flood control criteria, Dez Dam, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296
370 Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods

Authors: Inseok Yeo, Tae-Ho Song

Abstract:

To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al-metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metalbarrier- added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for service life of more than 20 years.

Keywords: Vacuum insulation panels, Service life, Double enveloping, Metal-barrier-added enveloping, Edge conduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
369 Optimization of Double Wishbone Suspension System with Variable Camber Angle by Hydraulic Mechanism

Authors: Mohammad Iman Mokhlespour Esfahani, Masoud Mosayebi, Mohammad Pourshams, Ahmad Keshavarzi

Abstract:

Simulation accuracy by recent dynamic vehicle simulation multidimensional expression significantly has progressed and acceptable results not only for passive vehicles but also for active vehicles normally equipped with advanced electronic components is also provided. Recently, one of the subjects that has it been considered, is increasing the safety car in design. Therefore, many efforts have been done to increase vehicle stability especially in the turn. One of the most important efforts is adjusting the camber angle in the car suspension system. Optimum control camber angle in addition to the vehicle stability is effective in the wheel adhesion on road, reducing rubber abrasion and acceleration and braking. Since the increase or decrease in the camber angle impacts on the stability of vehicles, in this paper, a car suspension system mechanism is introduced that could be adjust camber angle and the mechanism is application and also inexpensive. In order to reach this purpose, in this paper, a passive double wishbone suspension system with variable camber angle is introduced and then variable camber mechanism designed and analyzed for study the designed system performance, this mechanism is modeled in Visual Nastran software and kinematic analysis is revealed.

Keywords: Suspension molding, double wishbone, variablecamber, hydraulic mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7683
368 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: Thermoelasticity, three-dimensional, Laplace transforms, Fourier transforms, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
367 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
366 Some Relationships between Classes of Reverse Watson-Crick Finite Automata

Authors: Kazuki Murakami, Takashige Nakamura, Noriko Sakamoto, Kunio Aizawa

Abstract:

A Watson-Crick automaton is recently introduced as a computational model of DNA computing framework. It works on tapes consisting of double stranded sequences of symbols. Symbols placed on the corresponding cells of the double-stranded sequences are related by a complimentary relation. In this paper, we investigate a variation of Watson-Crick automata in which both heads read the tape in reverse directions. They are called reverse Watson-Crick finite automata (RWKFA). We show that all of following four classes, i.e., simple, 1-limited, all-final, all-final and simple, are equal to non-restricted version of RWKFA.

Keywords: automaton, DNA computing, formal languages, Watson-Crick automaton

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
365 Practical Evaluation of High-Efficiency Si-Based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38 eV to 2.5 eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: High-efficiency solar cells, material selection, Si-based double-junction solar cells, tandem solar cells, photovoltaics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
364 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
363 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: Debye length, double layer polarization, electrophoresis, mobility reversal, soft particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
362 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices

Authors: Kaan Yamanturk, Cihan Dogruoz

Abstract:

Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.

Keywords: Maximum considered earthquake, moment resisting frame, seismic isolator, seismic design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
361 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
360 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Authors: Khaled A. Madi

Abstract:

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.

Keywords: Power, inverter, PWM, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4391
359 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N  is candidate to be clusterized nuclei or not. In order to check this  attendance, we have measured the angular distributions for 14N ion  beam elastically scattered on 12C target nuclei at different low  energies; 17.5, 21, and 24.5MeV which are close to the Coulomb  barrier energy for 14N+12C nuclear system. Study of various transfer  reactions could provide us with useful information about the  attendance of nuclei to be in a composite form (core + valence). The  experimental data were analyzed using two approaches;  Phenomenological (Optical Potential) and semi-microscopic (Double  Folding Potential). The agreement between the experimental data and  the theoretical predictions is fairly good in the whole angular range.

 

Keywords: Deuteron Transfer, Elastic Scattering, Optical Model, Double Folding, Density Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
358 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
357 Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia

Authors: Jong-Ian Tsai, Chi-Chuan Chen, Tung-Sheng Zhan, Rong-Ching Wu

Abstract:

Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.

Keywords: Single-pole, Supersynchronous, Blade, Unbalance, filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
356 Nuclear Medical Image Treatment System Based On FPGA in Real Time

Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah

Abstract:

We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)

Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
355 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment

Authors: U. Yerlikaya, R. T. Balkan

Abstract:

In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.

Keywords: A* Algorithm, autonomous turrets, high-dimensional C-Space, manifold C-Space, point clouds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326