Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30101
Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: Gerda, double beta decay, germanium, LNGS.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1115352

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079

References:


[1] K. H. Ackermann et al., GERDA Collaboration, Eur. Phys. J. C 73, 2330 (2013) arXiv:1212.4067.
[2] F.T. Avignone III, G.S. King III, Y.G. Zdesenko, New J. Phys. 7, 6 (2005).
[3] M. Gunther et al., Phys. Rev. D 55, 54 (1997).
[4] C.E. Aalseth et al., Nucl. Phys. Proc. Suppl. 48, 223 (1996).
[5] M. Agostini et al., GERDA Collaboration, Eur. Phys. J. C 75, 39 (2015) arXiv:1410.0853
[6] L. Baudis et al., Phys. Rep. 307, 301 (1998).
[7] H.V. Klapdor-Klingrothaus et al., Nucl. Instrum. Methods A 481, 149 (2002).
[8] M. Agostini et al., GERDA Collaboration, Eur. Phys. J. C 74 2764 (2014) arXiv:1306.5084.
[9] M. Agostini et al., GERDA Collaboration, Phys. Rev. Lett. 111, 122503 (2013) arXiv:1307.4720.
[10] H. V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004) arXiv:hep-ph/0404088.
[11] M. Agostini et al., GERDA Collaboration, Eur. Phys. J. C 75, 416 (2015) arXiv:1501.02345.
[12] M. Agostini et al., GERDA Collaboration, J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201 arXiv:1506.03120.
[13] D. Budj´aˇs et al., J. Instrum. 4, P10007 (2009).
[14] S. Riboldi et al., (NSS/MIC), (2012) IEEE, p. 782-785.
[15] M. Agostini et al., GERDA Collaboration, J. Phys.: Conf. Ser. 375, 042009 (2012).
[16] J. Janicsk´o Csthy et al., Nucl. Instr. Methods 654, 225-232 (2011).
[17] M. Agostini et al., GERDA Collaboration, Eur. Phys. J. C 75, 255 (2015) arXiv:1502.04392.
[18] E. Gatti, P. F. Manfredi, Riv. Nuovo Cim. 9, 1 (1986).