Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30855
Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

Authors: M.M. Tahir, Q. Zafar, R. Akram, Kh.S. Karimov, T.A. Khan, M. Farooq


In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.

Keywords: Temperature Sensor, Copper Phthalocyanine, Metal-Semiconductor Schottky Junction, Organic Field Effect Transistor, Switching effect

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210


[1] C.D. Dimitrakopoulos, D.J. Mascaro, "Organic thin-film transistors: A review of recent advances", IBM J. Res. & Dev, vol. 45, pp. 11, 2001.
[2] H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. de Leeuw, T. Muck, J. Geurts, L.W. Molenkamp, V. Wagner "Bias-induced threshold voltages shifts in thin-film organic transistors", Applied Physics Letter, vol. 84, pg. 3184, 2004.
[3] P. Stallinga, H.L. Gomes, F. Biscarini, M. Murgia, D.M. de Leeuw "Electronic transport in field-effect transistors of sexithiophene", Journal of Applied Physics, vol. 96, pg. 5277, 2004.
[4] H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. de Leeuw, M. Muccini, J. Moulien, Polym. Adv. Technol, vol. 16, pg. 227, 2005.
[5] S.F. Nelson, Y.Y. Lin, D.J. Gundlach, T. N. Jackson, "Temperatureindependent transport in high mobility pentacene transistors", Applied Physics Letters, vol. 72, pg. 1854, 1998.
[6] Y.Y. Noh, D.Y. Kim, Y. Yoshida, K. Yase, B.J. Jung, E. Lim, H.K. Shim, Applied Physics Letters, vol. 86 (2006) 043501.
[7] Y.Y. Noh, J. Ghim, S.J. Kang, K.J. Baeg, D.Y. Kim, K. Yase, "Effect of light irradiation on the characteristics of organic field-effect transistors", Journal of Applied Physics, vol. 100 (2006) 094501.
[8] Y.G.Park, T. Kanki, H.Y. Lee, H. Tanaka, T. Kawai, "Solid-State Electronics", vol. 47, pg. 2221, 2003.
[9] M. Burgmair, H.P. Frerichs, M. Zimmer, M. Lehmann, I. Eisele, "Field effect transducers for work function gas measurements: device improvements and comparison of performance", Sensors and Actuators B, vol. 95, pg. 183, 2003.
[10] L. Wang, D. Fine, D. Sharma, L. Torsi, A. Dodabalapur, Anal Bional Chem, vol. 384, pg. 310, 2006.
[11] H. Bai, G. Shi," Gas Sensors Based on Conducting Polymers", Sensors, vol. 7, pg. 267, 2007.
[12] M.I. Fedorov, Ph.D. Thesis, Institute of Chemical Physics, Chernogolovka, Moscow, Russia, 1973.
[13] Kh.S. Karimov, Kh.M. Akhmedov, A.A. Dzhuraev, M.N. Khan, S.M. Abrarov, M.I. Fiodorov, "Impedance hygrometer based on natural organic material", Eurasian Chem. Tech. Journal, 3-4 (2000) , 251.
[14] Kh.S. Karimov, M.M. Ahmed, S.A. Moiz, M.I. Fedorov, "Temperature Dependent Photoelectric Cell", Solar Energy Materials & Solar Cells, vol. 87, pg. 61, 2005.
[15] C. Bartic, A. Campitelli, S. Borghs, "Field-effect detection of chemical species with hybrid organic/inorganic transistors", Applied Physics Letters, vol. 82, pg. 475, 2003.
[16] M.C. Petty, "An Introduction to Molecular Electronics", Edited by M.C. Petty, M.R. Bryce and D. Bloor, published by Edward Arnold, Great Britain, 1995.
[17] L.Valli, "Phthalocyanine-based Langmuir-Blodgett films as chemical sensors", Advances in Colloid and Interface Science, vol. 116, pg. 13, 2005.
[18] T. Miyata, S. Kawaguchi, M. Ishii, T. Minami, "High sensitivity chlorine gas sensors using Cu-phthalocyanine thin films", Thin Solid Films, vol. 425, pg. 255, 2003.
[19] A. Oprea, U. Weimar, E. Simon, M. Fleischer, H.P. Frerichs, Ch. Wilbertz, M. Lehman, ""Copper phthalocyanine suspended gate field effect transistors for NO2 detection", Sensors and Actuators B, vol. 118, pg. 249, 2006.
[20] M. Bouvet, "Phthalocyanine-based field-effect transistors as gas sensors", Anal Bioanal Chem , vol. 384, pg. 366, 2006.
[21] Kh.S. Karimov, S. Bellingeri, Y. Abe, "Processing by Centrifugation", Edited by L.L. Regel and W.R. Wilcox, Kluwer Academic/Plenum Publishers, New York, 2001, pg. 99.
[22] F. Gutman, L.E. Lyons, "Organic semiconductor", Part A, Robert E. Krieger Publishing Company, Malabar, Florida, 1980, pg. 251.
[23] F. Gutman, H. Keyzer, L.E. Lyons, R.B. Somoano, "Organic semiconductors", Part B, Robert E. Krieger Publishing Company, Malabar, Florida, 1983, pg. 122.
[24] Kh.S. Karimov, I. Qazi, M. Mahroof-Tahir, T.A. Khan , U. Shafique. " Photo Organic field effect transistor-s properties", Turk.J.Phys., vol. 32, pg. 1, 2008.
[25] N.F. Mott, E.A. Davis, "Electronic Processes in Noncrystalline Materials", Clarendon Press, Oxford, 1971.
[26] K. Akhmedov, M. Rahimova, Kh.S. Karimov, M.I. Cherkashin, J. Academy of Sciences of Tajikistan, vol. 25, pg. 24, 1982.
[27] D.A. Neamen, "Semiconductor Physics and Devices Basic Principles", Richard D. Irwin, Inc., USA, 1992, pg. 467.
[28] J.W. Dally, W.F. Riley, K.G. McConnell, "Instrumentation for Engineering Measurements", 2nd ed., John Willey & Sons, Inc., New York, U.S.A., 1993.
[29] I. Murtaza, Kh.S. Karimov, Z. Ahmad, I. Qazi , M. Mahroof-Tahir, T.A. Khan, "Humidity Sensitive Organic Field Effect Transistor" Journal of Semiconductors, vol. 31 (2010) 05001.
[30] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, "Organic photovoltaics Concepts and realization", Springer-Verlag, Berlin, Germany , 2003.
[31] W. Brutting, "Physics of organic semiconductors", WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005.