Search results for: plasma surface modification
900 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.
Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516899 Optimization of the Characteristic Straight Line Method by a “Best Estimate“ of Observed, Normal Orthometric Elevation Differences
Authors: Mahmoud M. S. Albattah
Abstract:
In this paper, to optimize the “Characteristic Straight Line Method" which is used in the soil displacement analysis, a “best estimate" of the geodetic leveling observations has been achieved by taking in account the concept of 'Height systems'. This concept has been discussed in detail and consequently the concept of “height". In landslides dynamic analysis, the soil is considered as a mosaic of rigid blocks. The soil displacement has been monitored and analyzed by using the “Characteristic Straight Line Method". Its characteristic components have been defined constructed from a “best estimate" of the topometric observations. In the measurement of elevation differences, we have used the most modern leveling equipment available. Observational procedures have also been designed to provide the most effective method to acquire data. In addition systematic errors which cannot be sufficiently controlled by instrumentation or observational techniques are minimized by applying appropriate corrections to the observed data: the level collimation correction minimizes the error caused by nonhorizontality of the leveling instrument's line of sight for unequal sight lengths, the refraction correction is modeled to minimize the refraction error caused by temperature (density) variation of air strata, the rod temperature correction accounts for variation in the length of the leveling rod' s Invar/LO-VAR® strip which results from temperature changes, the rod scale correction ensures a uniform scale which conforms to the international length standard and the introduction of the concept of the 'Height systems' where all types of height (orthometric, dynamic, normal, gravity correction, and equipotential surface) have been investigated. The “Characteristic Straight Line Method" is slightly more convenient than the “Characteristic Circle Method". It permits to evaluate a displacement of very small magnitude even when the displacement is of an infinitesimal quantity. The inclination of the landslide is given by the inverse of the distance reference point O to the “Characteristic Straight Line". Its direction is given by the bearing of the normal directed from point O to the Characteristic Straight Line (Fig..6). A “best estimate" of the topometric observations was used to measure the elevation of points carefully selected, before and after the deformation. Gross errors have been eliminated by statistical analyses and by comparing the heights within local neighborhoods. The results of a test using an area where very interesting land surface deformation occurs are reported. Monitoring with different options and qualitative comparison of results based on a sufficient number of check points are presented.
Keywords: Characteristic straight line method, dynamic height, landslides, orthometric height, systematic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567898 Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones
Authors: L. Temdrara, A. Khelifi, A. Addoun
Abstract:
Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics.
Keywords: Adsorption, activated carbon, chemical activation, enthalpy of immersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280897 A Comparison of Conventional and Biodegradable Chelating Agent in Different Type of Surfactant Solutions for Soap Scum Removal
Authors: Prariyada Theptat, Sumaeth Chavadej, John F. Scamehorn
Abstract:
One of the most challenges for hard surface cleaning product is to get rid of soap scum, a filmy sticky layer in the bathroom. The deposits of soap scum can be removed by using a proper surfactant solution with chelating agent. Unfortunately, the conventional chelating agent, ethylenediamine tetraacetic acid (EDTA), has low biodegradability, which can be tolerance in water resources and harmful to aquatic animal and microorganism. In this study, two biodegradable chelating agents, ethylenediamine disuccinic acid (EDDS) and glutamic acid diacetic acid (GLDA) were introduced as a replacement of EDTA. The result shows that using GLDA with amphoteric surfactant gave the highest equilibrium solubility of soap scum.
Keywords: Biodegradable chelating agent, EDDS, GLDA, Soap scum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5042896 Characterization of Catalagzi Fly Ash for Heavy Metal Adsorption
Authors: Nurcan Tugrul, Nil Baran Acarali, Seyma Kolemen, Emek Moroydor Derun, Sabriye Piskin
Abstract:
Fly ash is a significant waste that is released of thermal power plants and defined as very fine particles that are drifted upward with up taken by the flue gases due to the burning of used coal [1]. The fly-ash is capable of removing organic contaminants in consequence of high carbon content, a large surface area per unit volume and contained heavy metals. Therefore, fly ash is used as an effective coagulant and adsorbent by pelletization [2, 3]. In this study, the possibility of use of fly ash taken from Turkey like low-cost adsorbent for adsorption of zinc ions found in waste water was investigated. The fly ash taken from Turkey was pelletized with bentonite and molass to evaluate the adsorption capaticity. For this purpose; analyses such as sieve analysis, XRD, XRF, FTIR and SEM were performed. As a result, it was seen that pellets prepared from fly ash, bentonite and molass would be used for zinc adsorption.Keywords: Fly ash, heavy metal, sieve, adsorbent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593895 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.
Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209894 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis
Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh
Abstract:
This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.
Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573893 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles
Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine
Abstract:
This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).
Keywords: VO2, VO2 (B), V2O5, MOSFET, gate voltage, humidity sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138892 Using Lagrange Equations to Study the Relative Motion of a Mechanism
Authors: R. A. Petre, S. E. Nichifor, A. Craifaleanu, I. Stroe
Abstract:
The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program.
Keywords: Lagrange equations, relative motion, inertial or non-inertial reference frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580891 Catalytic Activity of Aluminum Impregnated Catalysts for the Degradation of Waste Polystyrene
Authors: J. Shah, M. Rasul Jan, Adnan
Abstract:
The aluminum impregnated catalysts of Al-alumina (Al-Al2O3), Al-montmorillonite (Al-Mmn) and Al-activated charcoal (Al-AC) of various percent loadings were prepared by wet impregnation method and characterized by SEM, XRD and N2 adsorption/desorption (BET). The catalytic properties were investigated in the degradation of waste polystyrene (WPS). The results of catalytic degradation of Al metal, 20% Al-Al2O3, 5% Al-Mmn and 20% Al-AC were compared with each other for optimum conditions. Among the catalyst used 20% Al-Al2O3 was found the most effective catalyst. The BET surface area of 20% Al-Al2O3 determined was 70.2 m2/g. The SEM data revealed the catalyst with porous structure throughout the frame work with small nanosized crystallites. The yield of liquid products with 20% Al-Al2O3 (91.53 ± 2.27 wt%) was the same as compared to Al metal (91.20 ± 0.35 wt%) but the selectivity of hydrocarbons and yield of styrene monomer (56.32 wt%) was higher with 20% Al-Al2O3 catalyst.
Keywords: Impregnation, catalytic degradation, waste polystyrene, styrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035890 Temperature Field Study of Brake Disc in a Belt Conveyor Brake
Authors: Hou Youfu, Wang Daoming, Meng Qingrui
Abstract:
To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954889 A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Md. Fazlul Karim, Esa Al-Islam
Abstract:
This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Boundary-fitted nested grid model, finite difference method, Indonesian tsunami of 2004, Southern Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798888 Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)
Authors: Peter Andráš, Adam Lichý, Jana Rusková, Lenka Matúšková
Abstract:
The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.Keywords: Contamination, dump-field, heavy metals, plants, sediment, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081887 The Robot Hand System that can Control Grasping Power by SEMG
Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani
Abstract:
SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.Keywords: SEMG, multi electrode, robot hand, power control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924886 Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments
Authors: F. Javier Benitez, Carolina Garcia, Juan Luis Acero, Francisco J. Real
Abstract:
Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.
Keywords: Phenylurea herbicides, UV radiation; Ozone, Fenton reagent, Hydroxyl radicals, Rate constants, Quantum yields
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933885 A Research on Inference from Multiple Distance Variables in Hedonic Regression – Focus on Three Variables
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.
Keywords: Hedonic regression, urban node, distance variables, multicollinerity, collinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993884 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.
Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506883 Implementation of a Web-Based Wireless ECG Measuring and Recording System
Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat
Abstract:
Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.Keywords: ECG, e-health sensor shield, raspberry Pi, wifi technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006882 Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand
Authors: Preeyaphorn Kosa, Thanutch Sukwimolseree
Abstract:
The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff.
Keywords: Climate, Runoff, SWAT, Upper Mun River Basin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356881 Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions
Authors: Ashok V. Borhade, Sanjay G. Wakchaure
Abstract:
Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.
Keywords: Gallosilicate, hydrothermal, nitrite, Reitveldrefinement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622880 Critical Properties of Charged Filter Membranes for Their Applications in Filtration
Authors: S. Bokka
Abstract:
Fiber filter membranes have a high surface area-to-volume ratio and high porosity making them ideal for various filtration and separation applications. Using the conventional filter membrane, a filtration efficiency of > 95% can be achieved. Specific applications such as air and fuel filtration require nearly 100% filtration efficiency, which is harder to achieve using conventional filter membranes. To achieve high filtration efficiencies additional costs are incurred due to increasing the cost of membrane and operating cost. Due to the simultaneous electrostatic attraction and mechanical capture, the electret filters have shown nearly 100% filtration efficiency. This article presents an overview of the charged filter membrane, its applications, and a discussion on factors contributing to increasing charge.
Keywords: Charged fiber membrane, piezoelectric materials, filtration, polymeric materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166879 On Some Signs of a Recurrent Climate Scenario Advent
Authors: Vladimir I. Byshev, Victor G. Neiman, Yuri A. Romanov, Ilya V. Serykh
Abstract:
Since atmosphere pressure field is an actual envoy of climatic signal the atmospheric Highs and Lows should be attributed to the key active focal points within the ocean-atmosphere interplay system. Here we were set a task to determine how the dynamics of those centres of action relates to the climate change both on regional and global scales. For this target the near-surface temperature and atmospheric pressure differences between the Icelandic Low and the Azores High were considered. The secular term of phase states of the system under consideration was found divided into three nonintersecting subsets. Each of that was put in consequence with one of three climatic scenarios related to the periods of 1905-1935 (relatively warm phase), 1940-1970 (cold phase) and 1980-2000 (warm phase).Keywords: Climate change, climatic scenario, fields of environmental characteristics, North Atlantic region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562878 Ecotoxicological Studies of Soil Using Analytical and Biological Methods: A Review
Authors: V. Chahal, A. Nagpal, Y. B. Pakade, J. K. Katnoria
Abstract:
Soil is a complex physical and biological system that provides support, water, nutrients and oxygen to the plants. Apart from these, it acts as a connecting link between inorganic, organic and living components of the ecosystem. In recent years, presence of xenobiotics, alterations in the natural soil environment, application of pesticides/inorganic fertilizers, percolation of contaminated surface water as well as leachates from landfills to subsurface strata and direct discharge of industrial wastes to the land have resulted in soil pollution which in turn has posed severe threats to human health especially in terms of causing carcinogenicity by direct DNA damage. The present review is an attempt to summarize literature on sources of soil pollution, characterization of pollutants and their consequences in different living systems.
Keywords: Soil Pollution, Contaminants, Heavy metals, Pesticides, Bioassays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3563877 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: Linear systems, visualization, optimization, two-Stage compensator design, Mathematica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192876 Analysis of Chatter in Ball End Milling by Wavelet Transform
Authors: S. Tangjitsitcharoen
Abstract:
The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.
Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375875 Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation
Authors: L. Mahdavian, M. Raouf
Abstract:
Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.
Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170874 Secondary Organic Contribution to Particles Formed on the Ice Melted Arctic Ocean
Authors: Petri Vaattovaara, Zoran D. Ristovski, Martin Graus, Marcus Müller, EijaAsmi, Luca Di Liberto, StaffanSjögren, Douglas Orsini, Caroline Leck, Ari Laaksonen
Abstract:
Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate.
Keywords: Arctic Ocean, ice melting, nucleation, secondary organics, clouds, climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492873 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings
Authors: Bin Su
Abstract:
Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.
Keywords: Building envelope, Building mass effect, Building thermal comfort, Building thermal performance, School building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868872 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.
Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659871 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics
Authors: Arturo Ayala-Hernandez, Humberto H´ıjar
Abstract:
We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.
Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227