Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32583
Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Authors: F. Javier Benitez, Carolina Garcia, Juan Luis Acero, Francisco J. Real


Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.

Keywords: Phenylurea herbicides, UV radiation; Ozone, Fenton reagent, Hydroxyl radicals, Rate constants, Quantum yields

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855


[1] M. Canle, S. Rodriguez, L.F. Rodriguez-Vazquez, J.A. Santaballa, S. Steenken, "First stages of photodegradation of the urea herbicides fenuron, monuron and diuron" J. Mol. Struct. 565 (2001) 133-139.
[2] S. Chiron, A. Fernandez-Alba, A. Rodriguez, E. Garcia-Calvo, "Pesticide chemical oxidation: State-of-the-art". Water Res. 34 (2000) 366-377.
[3] D. Mackay, W.Y. Shiu, K.C. Ma, "Illustrated handbook of physicochemical properties and environmental fate for organic chemicals". Vol. V, Pesticides Chemicals. Ed. Lewis, N. York, U.S.A. (1997).
[4] L. Meunier, S. Canonica, U. von Gunten, "Implications of sequential use of UV and ozone for drinking water quality" Water Res. 40 (2006) 1864-1876.
[5] J. Hoigne, "Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes", in The Handbook of Environmental Chemistry, vol. 5, part C. Quality and Treatment of Drinking Water II. Ed. Hrubec, J., Berlin, Germany (1998).
[6] G.V. Buxton, C.L. Greenstock, W.P.; Helman, A.B. Ross, "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OHÔùÅ/O-) in aqueous solutions" J. Phys. Chem. 17 (1988) 513-886.
[7] H. Bader and J. Hoigne, "Determination of ozone in water by the indigo method". Water Res. 15 (1981) 449-456.
[8] W. Chu, "Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process" Chemosphere 44 (2001) 935-941.
[9] F.J. Benitez, J. Beltran-Heredia, J.L. Acero, F.J. Rubio, "Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals" J. Chem. Technol. Biotechnol. 76 (2001) 312-320.
[10] O.M. Alfano, R.L. Romero, A.E. Cassano, "Radiation field modelling in photoreactors. 1. Homogeneous media", Chem. Eng. Sci. 41 (1986) 421- 444.
[11] J. Jirkovsky, V. Faure, P. Boule, "Photolysis of diuron", Pestic. Sci. 50 (1997) 42-52.
[12] V. Faure, P. Boule, "Phototransformation of linuron and chlorbromuron in aqueous solutions", Pestic. Sci. 51 (1997) 413-418.
[13] C. Tixier, L. Meunier, F. Bonnemoy, P. Boule, "Phototransformation of three herbicides: chlorbufam, isoproturon and chlorotoluron: influence of irradiation on toxicity", Int. J. Photoenergy 2 (2000) 1-8.
[14] S. Malato, J. Cáceres, A.R. Fernandez-Alba, L. Piedra, M.D. Hernando, A. Agüera, J. Vial, "Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity", Environ. Sci. Technol. 37 (2003) 2516-2524.
[15] K. Lanyi, Z. Dinya, "Photodegradation study for assessing the environmental fate of some triazine-, urea- and thiolcarbamate-type herbicides" Microchemical Journal 80 (2005) 79-87.
[16] M. Gurol, S. Nekouinaini, "Kinetic behavior of ozone in aqueous solutions of substituted phenols", Ind. Eng. Chem. Fundam. 23 (1984) 54-60.
[17] J.L. Acero, F.J. Benitez, M. Gonzalez, R. Benitez, "Kinetics of fenuron decomposition by single-chemical oxidants and combined systems", Ind. Eng. Chem. Res. 41 (2002) 4225-4232.
[18] J. De Laat, P. Maouala-Makata, M. Dore, "Rate constants for reactions of ozone and hydroxyl radicals with several phenylureas and acetamides", Environ. Technol. 17 (1996), 707-716.
[19] L. Amir Tahmasseb, S. Nelieu, L. Kerhoas, J. Einhorn, "Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways", The Sci. of the Total Env. 291 (2002) 33-44.
[20] G. Mascolo, A. Lopez, H. James, M. Fielding, ".By-products formation during degradation of isoproturon in aqueous solution. I: Ozonation" Water Res. 35 (2001) 1695-1704.
[21] B.G. Kwon, D.S. Lee, N. Kang, J. Yoon, "Characteristics of pchlorophenol oxidation by Fenton-s reagent", Water Res. 33 (1999) 2110-2118.
[22] W.Z. Tang, C.P. Huang, "2,4-Dichlorophenol oxidation kinetics by Fenton-s reagent" Environ. Technol. 17 (1996) 1371-1378.
[23] J.J. Pignatello, "Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicide by hydrogen peroxide" Environ. Sci. Technol. 26 (1992) 944-951.
[24] W.R. Haag, D.C.C. Yao, "Rate constants for reaction of hydroxyl radicals with several drinking water contaminants" Environ. Sci. Technol. 26 (1992) 1005-1013
[25] H. Gallard, J. De Laat, "Kinetics of oxidation of chlorobenzenes and phenylureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidence of reduction and oxidation reactions intermediates by Fe(II) and Fe(III)" Chemosphere 42 (2001) 405-413.
[26] P. Mazellier, J. Jirkovsky, M. Bolte, "Degradation of diuron photoinduced by iron(III) in aqueous solution" Pesticide Sci. 49 (1997) 259-267.
[27] M.J. Farre, S. Brosillon, X. Domenech, J. Peral, "Evaluation of the intermediates generated during the degradation of Diuron and Linuron herbicides by the photo-Fenton reaction" J. Photochem. Photobiol. A: Chemistry 189 (2007) 364-373.
[28] H. Allemane, M. Prados-Ramirez, J.Ph. Croue, B. Legube, "Recherche et identification des premiers sous-produits d-oxidation de l-isoproturon par le systeme ozone/peroxide d-hydrogene" Revue des Sciences de l-Eau 8 (1995), 315-331.