A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto H´ıjar

Abstract:

We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337573

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237

References:


[1] A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999) 8605
[2] A. Malevanets and R. Kapral, J. Chem. Phys. 112 (2000) 7260
[3] D. Frenkel and B. Smith, Understanding Molecular Simulations: from Algorithms to Applications, Academic Press, San Diego, 2002
[4] S. H. Lee and R. Kapral, J. Chem. Phys. 121 (2004) 11163
[5] N. Kikuchi, J. F. Ryder, C. M. Pooley and J. M. Yeomans, Phys. Rev. E 71 (2005) 061804
[6] J. T. Padding and A. A. Louis, Phys. Rev. E 74 (2006) 031402
[7] J. M. Yeomans, Physica A 369 (2006) 159
[8] E. T¨uzel, M. Strauss, T. Ihle and D. M. Kroll, Phys. Rev. E 68 (2003) 036701
[9] T. Ihle and D. M. Kroll, Phys. Rev. E 63 (2001) 020201
[10] T. Ihle and D. M. Kroll, Phys. Rev. E 67 (2003) 066706
[11] C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B 109 (2005) 6505
[12] G. Gompper, T. Ihle, D.M. Kroll and R.G. Winkler, Adv. Polym. Sci. 221 (2009) 1-87
[13] N. Kikuchi, A. Gent and J. M. Yeomans, Eur. Phys. J. E 9 (2002) 63
[14] A. Malevanets and J. M. Yeomans, Europhys. Lett. 52 (1999) 231
[15] M. Ripoll, K. Mussawisade, R. G. Winkler and G. Gompper, Europhys. Lett. 68 (2004) 106
[16] A. Lamura, G. Gompper, T. Ihle and D. M. Kroll, Europhys. Lett. 56 (2001) 319
[17] E. Allahyarov and G. Gompper, Phys. Rev. E 66 (2002) 036702
[18] H. Noguchi and G. Gompper, Phys. Rev. E 72 (2005) 011901
[19] A. Moncho Jord´a, A. A. Louis and J. T. Padding, Phys. Rev. Lett. 104 (2010) 068301
[20] A. Moncho Jord´a, A. A. Louis and J. T. Padding, J. Chem. Phys. 136 (2012) 064517
[21] M. Belushkin, R. G. Winkler and G. Foffi, J. Phys. Chem. B 115 (2011) 14263
[22] H. H´ıjar, J. Chem. Phys. 139 (2013) 234903
[23] J . K. Withmer and E. Luijten, J. Phys.: Condens. Matter, 22 (2010) 104106
[24] R. G. Winkler and C. C. Huang, J. Chem. Phys. 130 (2009) 074907
[25] J. P. Hansen and I. R. McDonald, Theory of simple liquids, 2nd ed. Academic Press, London, 1986
[26] H. H´ıjar and G. Sutmann, Phys. Rev. E 83 (2011) 046708
[27] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd revised English version, Pergamon, London (1959)