Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31515
Secondary Organic Contribution to Particles Formed on the Ice Melted Arctic Ocean

Authors: Petri Vaattovaara, Zoran D. Ristovski, Martin Graus, Marcus Müller, EijaAsmi, Luca Di Liberto, StaffanSjögren, Douglas Orsini, Caroline Leck, Ari Laaksonen


Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate.

Keywords: Arctic Ocean, ice melting, nucleation, secondary organics, clouds, climate.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168


[1] Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P.H., Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176, 2004.
[2] O’Dowd, C.D. Biogenic coastal aerosol production and its influence on aerosol radiative properties, J. Geophys. Res., 106, 1545-1550.
[3] Slingo, A. (1990). Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343, 49-51, 2001.
[4] O’Dowd, C.D. and de Leeuw, G., Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A, 365, 1753-1774, 2007.
[5] Katoshevski, D., Nenes, A., and Seinfeld, J.H., A study of Processes that Govern the Maintenance of Aerosols in the Marine Boundary Layer. J. Aerosol Sci., 30, 503-532, 1999.
[6] Vaattovaara, P., Huttunen, P.E., Yoon, Y.J., Joutsensaari, J., Lehtinen, K.E.J., O’Dowd, C.D., and Laaksonen, A., The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 6, 4601-4616, 2006.
[7] Arrigo, K., van Dijken, G., and Padi, S., Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett., 35, LI9603, 2008.
[8] Wiedensohler, A, Covert, D.S., Swietlicki, E., Aalto, P., Heintzenberg, J., and Leck, C., Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus, 48B, 213-222, 1996
[9] Ström, J., Umegård, J., Torseth, K., Tunved, P., H.-C. Hansson, Holmén, K., Wismann, V., Herber, A., König-Langlo, G., One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001. Phys. Chem. Earth, 28, 1181-1190, 2003
[10] Vaattovaara, P., Räsänen, M., Kühn, T., Joutsensaari, J., Laaksonen, A., A method for detecting the presence of organic fraction in nucleation mode sized particles. Atmos. Chem. Phys., 5, 3277-3287, 2005.
[11] Johnson, G.R., Ristovski, Z.D.,D’Anna, B., Morawska, L., Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique. J. Geophys. Res., 110, D20203, 2005.
[12] Graus, M., Mueller, M., and Hansel, A.: High resolution PTR-TOF: quantification and formula confirmation of VOC in real time, J. Am. Soc. Mass Spectr., 21, 1037–1044, 2010.
[13] Draxler, R.R. and Rolph, G.D., HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Model access via NOAA ARL READY Website (, Silver Spring, MD: NOAA Air Resources Laboratory, 2003.
[14] Rolph, G.D., Real-time Environmental Applications and Displays Ystem (READY) Website, Silver Spring, MD: NOAA Air Resources Laboratory, 2003.
[15] Clarke, A.D. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution. J. Geophys. Res., 98, 20633-20647, 1993.
[16] Raes, F., and Van Dingenen. Simulations of condensation and cloud condensation nuclei from dimethyl sulphide in the natural marine boundary layer,J.Geophys. Res., 97, 12901-12912, 1992.
[17] Leck, C. and Bigg, K., Aerosol production over remote marine areas – A new route. Geophys. Res. Lett., 23, 3577-3581, 1999.
[18] Gantt, B., Meskhidze, N., Kamykovski, D., A new physically-based quantification of isoprene and primary organic aerosol emissions from the world’s oceans. Atmos .Chem. Phys. Discuss., 9, 2933-2965, 2009.
[19] Yassaa, N., Peeken, I., Zöllner, E., Bluhm, K., Arnold, S., Sparclen, D., Williams, J., Evidence for marine production of monoterpenes.Environ. Chem., 5, 391-401, 2008.
[20] Colomb, A., Yassaa, N., Williams, J., Peeken, I., and Lochte, K., Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Mon., 10, 325-330, 2008.