Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.
Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3462095
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664References:
[1] L. Mo, F. Zhang, M. Deng, F. Jin, A. Al-Tabbaa, A. Wang, “Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates,” Cem. Concr. Compos., vol. 83, pp. 138-145, 2017.
[2] K. Komnitsas, G. Bartzas, V. Karmali, E. Petrakis, W. Kurylak, G. Pietek, J. Kanasiewicz, “Assessment of alkali activation potential of a Polish ferronickel slag,” Sustainability, vol. 11, 1863, 2019.
[3] C. Chen, G. Habert, Y. Bouzidi, A. Jullien, “Environmental impact of cement production: detail of the different processes and cement plant variability evaluation,” J. Clean. Prod., vol. 18, pp. 478-485, 2010.
[4] M. Ali, R. Saidur, M. Hossain, “A review on emission analysis in cement industries,” Renew. Sust. Energ. Rev., vol 15, pp. 2252-2261, 2011.
[5] C. Maharaj, D. White, R. Maharaj, C. Morin, “Re-use of steel slag as an aggregate to asphaltic road pavement surface,” Cogent Eng., vol. 4, 1416889, 2017.
[6] K. Komnitsas, “Potential of geopolymer technology towards green buildings and sustainable cities,” Procedia Eng., vol. 21, pp. 1023-1032, 2011.
[7] A. Mehta, R. Siddique, “Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties,” J. Clean. Prod., vol. 205, pp. 49-57, 2018.
[8] K. Komnitsas, D. Zaharaki, “Geopolymerisation: A review and prospects for the minerals industry,” Miner. Eng., vol. 20, pp. 1261-1277, 2007.
[9] K. Komnitsas, D. Zaharaki, V. Perdikatsis, “Geopolymerisation of low calcium ferronickel slags,” J. Mater. Sci., vol. 42, pp. 3073-3082, 2007.
[10] K. Komnitsas, D. Zaharaki, V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” J. Hazard. Mater., vol. 161, pp. 760-768, 2009.
[11] H. Xu, J.S.J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, pp. 247-266, 2000.
[12] D. Zaharaki, K. Komnitsas, V. Perdikatsis, “Use of analytical techniques for identification of inorganic polymer gel composition,” J. Mater. Sci., vol. 45, pp. 2715-2724, 2010.
[13] E. Petrakis, E. Stamboliadis, K. Komnitsas, “Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modelling,” KONA Powder Part. J., vol. 34, pp. 213-223, 2017.
[14] J. Kierczak, C. Neel, J. Puziewicz, H. Bril, “The Mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, Southwestern Poland,” Can. Miner. vol. 47, pp. 557–572, 2009.
[15] U. Kuila, M. Prasad, “Specific surface area and pore‐size distribution in clays and shales,” Geophys. Prospect., vol. 61, pp. 341-362, 2012.
[16] British Standards Institute. BS EN 1936: Natural Stone Test Methods. Determination of Real Density and Apparent Density and of Total and Open Porosity; NP EN 1936:2006; BSI: London, UK, 2007.
[17] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, “Effect of Curing Profile on Kaolin-based Geopolymers,” Phys. Procedia., vol. 22, pp. 305-311, 2011.
[18] A. Soultana, A. Valouma, G. Bartzas, K. Komnitsas, “Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag,” Minerals, vol. 9, 551, 2019.