A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Md. Fazlul Karim, Esa Al-Islam

Abstract:

This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Boundary-fitted nested grid model, finite difference method, Indonesian tsunami of 2004, Southern Thailand.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108378

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759

References:


[1] Abbott, M.B., Damsgaard, A., and Rodenhuis, G.S., “System 21, ‘Jupiter’ A design system for two-dimensional nearly-horizontal flows”, J. of Hydraulic Research, 11(1), 1 -28, 1973.
[2] Ammon, J.C., Ji, C., Thio, H., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichionose, G., Polet, J., and Wald, D., “Rupture Process of the 2004 Sumatra-Andaman Earthquake” Science 308, 1133-1139, 2005.
[3] Falconer, R.A., “Numerical modeling of tidal circulation in harbours”, J. Waterway, Port, Coastal and Ocean Div., Proc. ASCE, 106, WW1, 31 – 48, 1980.
[4] Iguchi, T., “A mathematical analysis of tsunami generation in shallow water due to sea bed deformation”, Proceedings of the Royal Society of Edinburgh, 141A, 551-608, 2011.
[5] Jones, J. E., and Davis, A. M., “Storm Surge computations for the Irish Sea using a three dimensional numerical model including wave-current interaction”, Continental Shelf Research, 18, 201-251, 1998.
[6] Johns, B., Rao, A. D., Dube, S. K., and Sinha, P. C., “ Numerical modelling of tide-surge interaction in the Bay of Bengal”, Phil. Trans. Roy. Soc. London A 313, 507 – 535, 1985.
[7] Karim, M. F., Roy, G. D., Ismail, A. I. M., and Meah, M. A., “ A linear Cartesian coordinate shallow water model for tsunami computation along the west coast of Thailand and Malaysia” Int. J. of Ecology & Development” 4(S06): 1 – 14, 2006.
[8] Karim, M. F., Roy, G. D., Ismail, A. I. M., and Meah, M. A., “ A shallow water model for computing tsunami along the west coast of Peninsular Malaysia and Thailand using boundary-fitted curvilinear grids” Journal of Science of Tsunami Hazards, 26 (1), 21 – 41, 2007a.
[9] Karim, M. F., Roy, G. D., and Ismail, A. I. M., “An Investigation on the Effect of Different Orientation of a Tsunami Source along the Coastal Belt of Penang Island: A Case Study of the Indonesian Tsunami 2004” Far East J. of Ocean Research, 1 (1), 2007, 33-47, 2007b.
[10] Karim, M. F., Roy, G. D., Ismail, A. I. M.; and Meah, M.A., “Numerical Simulation of Indonesian Tsunami 2004 along Southern Thailand: A Nested Grid Model”, International Journal of Mathematical, Physical and Engineering Sciences, volume 3 (1),8-14, 2009a.
[11] Karim, M. F., Ismail, A. I. M.; and Meah, M.A., “Numerical Simulation of Indonesian Tsunami 2004 at Penang Island in Peninsular Malaysia using a Nested Grid Model, International Journal of Mathematical Models and Methods in Applied Sciences, Issue 1, volume 3, 1-8, 2009b”.
[12] Kowalik, Z., Knight, W., and Whitmore, P. M., “Numerical Modeling of the Global Tsunami: Indonesian Tsunami of 26 December 2004” Journal of Sc. Tsunami Hazards. 23(1), 40 – 56, 2005.
[13] Matsutomi, H., Hiraishi, T., Takahashi, T., Matsuyama, F., Harada, K., and Nakusakul, S., “Supartid, S., Kanbua, W., Siwabowon, C., Phetdee, S., Jachoowong, W., and Srivichai, M., “The December 26, 2004 Sumatra Earthquake Tsunami, Tsunami Field Survey around Phuket, Thailand”, http://www.drs.dpri.kyoto-u.ac.jp/sumatra/thailand/phuket_ survey_e.html, 2004, 2005.
[14] Murty, T. S., Nirupama, N., Nistor, I., and Hamdi, S., “ Far-field characteristics of the tsunami of 26 December 2004”, ISET Journal of Earthquake Technology, Technical Note, vol. 42, No. 4, 213-217, 2005.
[15] Okada, Y.,” Surface Deformation due to Shear and Tensile Faults in a Half Space” Bull, Seism. Soc. Am., 75, 1135 – 1154, 1985.
[16] Roy, G. D., Karim, M. F., and Ismail, A. M., “A Non-Linear Polar Coordinate Shallow Water Model for Tsunami Computation along North Sumatra and Penang Island” Continental Shelf Research, 27, 245–257, 2007.
[17] Roy, G. D., Karim, M. F., and Ismail, A. M., “ Numerical Computation of Some Aspects of 26 December 2004 Tsunami along the West Coast of Thailand and Peninsular Malaysia Using a Cartesian Coordinate Shallow Water Model. Far East J. of Applied Mathematics, 25(1), 57- 71, 2006”.
[18] Satake, K., Okamura, Y., Shishikura, M.,and Fujima, K., “The December 26, 2004 Sumatra Earthquake Tsunami, Tsunami Field Survey around Phuket, Thailand”, http://www.drs.dpri.kyotou. ac.jp/sumatra/thailand/phuket_survey_e.html,20005b, 2005.
[19] Tsuji, Y., Namegaya, Y., Matsumoto, H., Iwasaki, S., Kanbua, W., Sriwichai, M., and Meesuk, V., “The 2004 Indian tsunami in Thailand: Surveyed run-up heights and tide gauge records” Earth Planets Space, 58, 223-232, 2006.