Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31106
Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions

Authors: Ashok V. Borhade, Sanjay G. Wakchaure


Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.

Keywords: Hydrothermal, nitrite, Gallosilicate, Reitveldrefinement

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316


[1] L. Pauling, The structure of sodalite and helvite, Z. Kristallogr., vol. 74, pp. 213-225, 1930.
[2] L. Lons, and H. Schulz, Strukturverfeinerung von Sodalith, Na8Si6Al6O24Cl2, Act. Crystallogr., vol. 23, pp.434-436, 1967.
[3] C. Z. Van Doorn, D. J. Schipper and P. T. Bolwijn, Optical Investigation of Cathodochromic Sodalite, J. Electrochem. Soc., vol. 119, pp. 85-92, 1972.
[4] S. D. Mclaughan and D. J. Marshall, Paramagnetic resonance of F-type centres in photochromic sodalites, Phys. Lett., vol. 32A, pp. 343-344, 1970.
[5] P. T. Bolwijn, D. J. Schipper and C. Z. Van Doorn, Cathodrochromic Properties of Sodalite, J. Appl. Phys., vol. 43, pp. 132-137, 1972.
[6] S. Kowalak, M. Pawlowska, M. Monika, et al., Synthesis of ultramarine from synthetic molecular sieves, Colloids surfaces A, Physico Chem. Eng. Aspects, vol. 101, pp.179-185, 1951..
[7] I. Chang, Synthesis of Photochromic and Cathodochromic Sodalite J.Electrochem. Soc., vol. 121, pp. 815-820, 1974.
[8] K. Suzuki, Y. Kiyozumi, S. Shin, et al., Synthesis of new gallosilicate zeolite with sodalite structure, Zeolites, vol. 5, pp. 11-14, 1985.
[9] L. B. McCusker, W. M. Meier, K. Suzuki, et al., The crystal structure of a sodium gallosilicate sodalite, Zeolites, vol. 6, pp. 388-91, 1986.
[10] J. M. Newsam, and J. D. Jorgensen, Gallosilicate sodalite further syntheses and structural details, Zeolites, vol. 7, pp. 569-73, 1987.
[11] G. M. Johnson, and M. T. Weller, Synthesis and characterisation of gallium and germanium containing sodalites, Studies in Surface Science and Catalysis, vol. 105A, pp. 269-275, 1987.
[12] B. Xianhui, F. Pingyun, G. Thurman., et al., Hydrothermal Synthesis and Structural Characterization of Zeolite-like Structures Based on Gallium and Aluminum Germanates, Journal of the American Chemical Society, vol.120, pp. 13389-13397, 1998.
[13] G. M. Johnson, & M. T. Weller, A Powder Neutron Diffraction Study of Lithium Substituted Gallosilicate and Aluminogermanate Halide Sodalites, Inorganic Chemistry, vol.38, pp. 2442-2450, 1999.
[14] G. M. Johnson, P. J. Mead and M. T. Weller, Structural trends in the sodalite family, Phys. Chem. Chem., vol. 1, pp. 3709-371, 1999.
[15] T. M. Gesing, Structure and properties of tecto-gallosilicates. I. Hydrosodalites and their phase transitions, Z. Kristallogr., vol. 215, pp. 510-517, 2000.
[16] T. M. Gesing, Structure and properties of tecto-gallosilicates II. Sodium chloride, bromide and iodide sodalites, Z. Kristallogr., vol. 222, pp. 289- 296, 2007.
[17] J. C. Buhl, T. M. Gesing, T. Hoefs, et. al., Synthesis and crystal structure of gallosilicate and aluminogermanate tetrahydroborate sodalites Na8(GaSiO4)6(BH4)2 and Na8(AlGeO4)6(BH4)2, Journal of Solid State Chemistry, vol.179, pp. 3877-3882, 2006.
[18] M. M. Murshed, and T. M. Gesing, Isomorphous gallium substitution in the alumosilicate sodalite framework: synthesis and structural studies of chloride and bromide containing phases, Z. Kristallogr., 2007, vol. 222, pp. 341-349, 2007.
[19] M. M. Murshed, and T. M. Gesing, Gallium substitution in the alumosilicate framework: synthesis and structural studies of hydro sodalites, Z. Kristallogr., vol. 223, pp. 178-185, 2008.
[20] M.M. Murshed, A. J. Baer, and T. M. Gesing, Isomorphous framework cation substitution in the alumosilicatesodalites: synthesis, structural and spectroscopic studies of nitritecontaining phases, Z. Kristallogr., vol. 223, pp. 575-583, 2008.
[21] R. M. Barrer, J. F. Cole, and H. Sticher, Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite J. Chem. Soc, pp. 2475-2485, 1968.
[22] F. Hund, Nitrite, Cyanide und Rhodanid-Sodalite, Z. Anorg. Allg. Chem, vol. 511, pp. 225-230, 1984.
[23] D. J. Schipper, C.Z. Van Doorn, and P. T. Bolwijn, Preparation of Cathodochromic Sodalites, J. A. Ceramic. Soc., vol. 55, pp. 256-559, 1972.
[24] G. M. Johnson, P. J. Mead, and M. T. Weller, Synthesis of a range of anion-containing gallium and germanium sodalites, Micro. and Meso. Mate, vol. 38, pp. 445-460, 2000.
[25] S. Bachmann and J. C. Buhl, Crystallization, characterization and structure of nitrite aluminogermanate sodalite Na8(AlGeO4)6(NO2)2, Micro. and Meso. Mate., vol. 28, pp. 35-47, 1999.
[26] M. E. Fleet, Structures of sodium alumino-germanate sodalites (Na8(Al6Ge6O24)A2, A = Cl, Br, I), Acta. Cryst, vol. C45, pp. 843-847, 1989.
[27] W. Kiefer, and H. Bernstein, Resonance Raman spectroscopic study on iodine in various organic solvents: Spectroscopic constants and half band widths of the I2 vibration J. Appl. Spectro., vol.25, pp. 500-509, 1971.
[28] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Crystallgr., vol.A32, pp. 751-767, 1976.
[29] P. B. Kempa, G. Engelhardt, J. C. Buhl, et al., X-ray powder diffraction crystal structure analysis and 29Si, 23Na MAS n.m.r. studies of nitrite sodalite, Na8(AlSiO4)6 (NO2)2, at 295 K, Zeolites, vol. 11, pp. 558-562, 1991.
[30] G. Engelhardt, S. Luger, J. C. Buhl, et al., 29Si MAS n.m.r. of aluminosilicate sodalites: Correlations between chemical shifts and structure parameters, Zeolites, vol. 9, pp. 182-186, 1989.
[31] E. Kundla, A. Samson and E. Lippma, High-resolution NMR of quadrupolar nuclei in rotating solids, Chem. Phy. Letters, vol.83, pp. 229-232, 1981.
[32] J. C. Buhl, Hydrothermal synthesis and characterization of nitrite sodalite single crystals, J. Crystal Growth, vol. 108, pp. 143-149, 1991.
[33] J. C. Buhl, F. Stief, M. Fechtelkord, et al., Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na7.6(AlSiO4)6(NO3)1.6(H2O)2, J. Alloys and Comp., vol.305, pp. 93-102, 2000.