Search results for: residual strain energy
1958 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry
Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh
Abstract:
The demand for energy is cumulatively increasing with time. Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields. In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector. The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India. A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system. The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C). Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.
Keywords: Organic rankine cycle, regenerative organic rankine cycle, waste heat recovery, Indian industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691957 Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels
Authors: R. Vedhapriya Vadhana, Ruba Soundar, K. G. Jothi Shalini
Abstract:
We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.Keywords: Beamforming, interference channels, MIMO-OFDM, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11261956 The Incorporation of In in GaAsN as a Means of N Fraction Calibration
Authors: H. Hashim, B. F. Usher
Abstract:
InGaAsN and GaAsN epitaxial layers with similar nitrogen compositions in a sample were successfully grown on a GaAs (001) substrate by solid source molecular beam epitaxy. An electron cyclotron resonance nitrogen plasma source has been used to generate atomic nitrogen during the growth of the nitride layers. The indium composition changed from sample to sample to give compressive and tensile strained InGaAsN layers. Layer characteristics have been assessed by high-resolution x-ray diffraction to determine the relationship between the lattice constant of the GaAs1-yNy layer and the fraction x of In. The objective was to determine the In fraction x in an InxGa1-xAs1-yNy epitaxial layer which exactly cancels the strain present in a GaAs1-yNy epitaxial layer with the same nitrogen content when grown on a GaAs substrate.Keywords: Indium, molecular beam epitaxy, nitrogen, straincancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131955 Why We Are Taller in the Morning than Going to Bed at Night – An in vivo and in vitro Study
Authors: Harcharan Singh Ranu
Abstract:
Intradiscal and intervertebral pressure transducers were developed. They were used to map the pressures in the nucleus and within the annulus of the human spinal segments. Their stressrelaxation were recorded over a period of time for nucleus pressure, applied load, and peripherial strain against time. The results show that for normal discs, pressures in the nucleus are viscoelastic in nature with the applied compressive load. Mechanical strains which develop around the periphery of the vertebral body are also viscoelastic with the applied compressive load. Applied compressive load against time also shows viscoelastic behavior. However, annulus does not respond viscoelastically with the applied load. It showed a linear response to compressive loading.Keywords: Intradiscal pressure transducer (IDPT), intervertebral pressure transducer (IVPT), mechanical strains of vertebral bone, viscoelasticity of human spinal disc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32731954 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications
Authors: G. Korotcenkov, V. Brinzari, B. K. Cho
Abstract:
The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.Keywords: Energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181953 Effectiveness of Moringa oleifera Coagulant Protein as Natural Coagulant aid in Removal of Turbidity and Bacteria from Turbid Waters
Authors: B. Bina, M.H. Mehdinejad, Gunnel Dalhammer, Guna RajaraoM. Nikaeen, H. Movahedian Attar
Abstract:
Coagulation of water involves the use of coagulating agents to bring the suspended matter in the raw water together for settling and the filtration stage. Present study is aimed to examine the effects of aluminum sulfate as coagulant in conjunction with Moringa Oleifera Coagulant Protein as coagulant aid on turbidity, hardness, and bacteria in turbid water. A conventional jar test apparatus was employed for the tests. The best removal was observed at a pH of 7 to 7.5 for all turbidities. Turbidity removal efficiency was resulted between % 80 to % 99 by Moringa Oleifera Coagulant Protein as coagulant aid. Dosage of coagulant and coagulant aid decreased with increasing turbidity. In addition, Moringa Oleifera Coagulant Protein significantly has reduced the required dosage of primary coagulant. Residual Al+3 in treated water were less than 0.2 mg/l and meets the environmental protection agency guidelines. The results showed that turbidity reduction of % 85.9- % 98 paralleled by a primary Escherichia coli reduction of 1-3 log units (99.2 – 99.97%) was obtained within the first 1 to 2 h of treatment. In conclusions, Moringa Oleifera Coagulant Protein as coagulant aid can be used for drinking water treatment without the risk of organic or nutrient release. We demonstrated that optimal design method is an efficient approach for optimization of coagulation-flocculation process and appropriate for raw water treatment.Keywords: MOCP, Coagulant aid, turbidity removal, E.coliremoval, water, treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35411952 Cooperative Data Caching in WSN
Authors: Narottam Chand
Abstract:
Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27581951 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.
Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651950 A Frequency Grouping Approach for Blind Deconvolution of Fairly Motionless Sources
Authors: E. S. Gower, T. Tsalaile, E. Rakgati, M. O. J. Hawksford
Abstract:
A frequency grouping approach for multi-channel instantaneous blind source separation (I-BSS) of convolutive mixtures is proposed for a lower net residual inter-symbol interference (ISI) and inter-channel interference (ICI) than the conventional short-time Fourier transform (STFT) approach. Starting in the time domain, STFTs are taken with overlapping windows to convert the convolutive mixing problem into frequency domain instantaneous mixing. Mixture samples at the same frequency but from different STFT windows are grouped together forming unique frequency groups. The individual frequency group vectors are input to the I-BSS algorithm of choice, from which the output samples are dispersed back to their respective STFT windows. After applying the inverse STFT, the resulting time domain signals are used to construct the complete source estimates via the weighted overlap-add method (WOLA). The proposed algorithm is tested for source deconvolution given two mixtures, and simulated along with the STFT approach to illustrate its superiority for fairly motionless sources.Keywords: Blind source separation, short-time Fouriertransform, weighted overlap-add method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271949 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading
Authors: Ashkan Shafee, Ahmad Fahimifar
Abstract:
There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.
Keywords: Deep excavation, pile group, inclined loading, lateral deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9981948 Comparison between Lift and Drag-Driven VAWT Concepts on Low-Wind Site AEO
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This work presents a comparison between the Annual Energy Output (AEO) of two commercial vertical-axis wind turbines (VAWTs) for a low-wind urban site: both a drag-driven and a liftdriven concepts are examined in order to be installed on top of the new Via dei Giustinelli building, Trieste (Italy). The power-curves, taken from the product specification sheets, have been matched to the wind characteristics of the selected installation site. The influence of rotor swept area and rated power on the performance of the two proposed wind turbines have been examined in detail, achieving a correlation between rotor swept area, electrical generator size and wind distribution, to be used as a guideline for the calculation of the AEO.Keywords: Annual Energy Output, micro-generationtechnology, urban environment, Vertical-Axis Wind Turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60281947 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: Non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821946 Shell Closures in Exotic Nuclei
Authors: G. Saxena, D. Singh, M. Kaushik,
Abstract:
Inspired by the recent experiments [1]-[3] indicating unusual doubly magic nucleus 24O which lies just at the neutron drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state dependent BCS approach for the description of the ground state properties of the drip-line nuclei [23]-[27], we have further employed this approach, across the entire periodic table, to explore the unusual shell closures in exotic nuclei. In our RMF+BCS approach the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculations of pairing energy. Detailed analysis of the single particle spectrum, pairing energies and densities of the nuclei predict the unusual proton shell closures at Z = 6, 14, 16, 34, and unusual neutron shell closures at N = 6, 14, 16, 34, 40, 70, 112.Keywords: Relativistic Mean Field theory, Magic Nucleus, Si isotopes, Shell Closure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031945 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18681944 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671943 Mechanical and Chemical Reliability Assessment of Silica Optical Fibres
Authors: Irina Severin, M. Caramihai, K. Chung, G. Tasca, T. Park
Abstract:
The current study has investigated the ageing phenomena of silica optical fibres in relation to water activity which might be accelerated when exposed to a supplementary energy, such as microwaves. A controlled stress by winding fibres onto accurate diameter mandrel was applied. Taking into account that normally a decrease in fibre strength is induced in time by chemical action of water, the effects of cumulative reagents such as: water, applied stress and supplementary energy (microwave) in some cases acted in the opposite manner. The microwave effect as a structural relaxation catalyst appears unexpected, even if the overall gain in fibre strength is not high, but the stress corrosion factor revealed significant increase in certain simulation conditions.Keywords: optical fibres, mechanical testing, aging, microwave, structural relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291942 Investigation on the Behavior of Conventional Reinforced Coupling Beams
Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta
Abstract:
Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.
Keywords: Design studies, computational model(s), case study/studies, modeling, coupling beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33101941 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation
Authors: H. Rahman, T. Donchev, D. Petkova
Abstract:
Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.Keywords: Shear walls, internal FRP reinforcement, cyclic loading, energy dissipation and seismic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7471940 Beating Phenomenon of Multi-Harmonics Defect Frequencies in a Rolling Element Bearing: Case Study from Water Pumping Station
Authors: Fathi N. Mayoof
Abstract:
Rolling element bearings are widely used in industry, especially where high load capacity is required. The diagnosis of their conditions is essential matter for downtime reduction and saving cost of maintenance. Therefore, an intensive analysis of frequency spectrum of their faults must be carried out in order to determine the main reason of the fault. This paper focus on a beating phenomena observed in the waveform (time domain) of a cylindrical rolling element bearing. The beating frequencies were not related to any sources nearby the machine nor any other malfunctions (unbalance, misalignment ...etc). More investigation on the spike energy and the frequency spectrum indicated a problem with races of the bearing. Multi-harmonics of the fundamental defects frequencies were observed. Two of them were close to each other in magnitude those were the source of the beating phenomena.Keywords: Bearing, beating, spike energy, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41711939 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.
Keywords: Network worms, malware infection propagating malicious code, virus, security, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28111938 Uniform Heating during Focused Ultrasound Thermal Therapy
Authors: To-Yuan Chen, Tzu-Ching Shih, Hao-Li Liu, Kuen-Cheng Ju
Abstract:
The focal spot of a high intensity focused ultrasound transducer is small. To heat a large target volume, multiple treatment spots are required. If the power of each treatment spot is fixed, it could results in insufficient heating of initial spots and over-heating of later ones, which is caused by the thermal diffusion. Hence, to produce a uniform heated volume, the delivered energy of each treatment spot should be properly adjusted. In this study, we proposed an iterative, extrapolation technique to adjust the required ultrasound energy of each treatment spot. Three different scanning pathways were used to evaluate the performance of this technique. Results indicate that by using the proposed technique, uniform heating volume could be obtained.Keywords: focused ultrasound, thermal therapy, uniform heating, iteration, extrapolation, scan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261937 Vibration Signals of Small Vertical Axis Wind Turbines
Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly
Abstract:
In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.
Keywords: Savonius wind turbine, number of blades, vibration amplitude, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9481936 Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends
Authors: Velmurugan. A, Loganathan. M
Abstract:
The increased number of automobiles in recent years has resulted in great demand for fossil fuel. This has led to the development of automobile by using alternative fuels which include gaseous fuels, biofuels and vegetables oils as fuel. Energy from biomass and more specific bio-diesel is one of the opportunities that could cover the future demand of fossil fuel shortage. Biomass in the form of cashew nut shell represents a new energy source and abundant source of energy in India. The bio-fuel is derived from cashew nut shell oil and its blend with diesel are promising alternative fuel for diesel engine. In this work the pyrolysis Cashew Nut Shell Liquid (CNSL)-Diesel Blends (CDB) was used to run the Direct Injection (DI) diesel engine. The experiments were conducted with various blends of CNSL and Diesel namely B20, B40, B60, B80 and B100. The results are compared with neat diesel operation. The brake thermal efficiency was decreased for blends of CNSL and Diesel except the lower blends of B20. The brake thermal efficiency of B20 is nearly closer to that of diesel fuel. Also the emission level of the all CNSL and Diesel blends was increased compared to neat diesel. The higher viscosity and lower volatility of CNSL leads to poor mixture formation and hence lower brake thermal efficiency and higher emission levels. The higher emission level can be reduced by adding suitable additives and oxygenates with CNSL and Diesel blends.Keywords: Bio-oil, Biodiesel, Cardanol, Cashew nut shell liquid (CNSL)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39401935 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning
Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto
Abstract:
In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17941934 Optimal DG Placement in Distribution systems Using Cost/Worth Analysis
Authors: M Ahmadigorji, A. Abbaspour, A Rajabi-Ghahnavieh, M. Fotuhi- Firuzabad
Abstract:
DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth rate and load forecast uncertainty (LFU) on optimum DG location are studied.Keywords: Distributed generation, optimal placement, cost/worthanalysis, customer interruption cost, Dynamic programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29751933 A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer
Authors: Hilmi Kuscu, Ahmet Cihan, Kamil Kahveci, Ugur Akyol
Abstract:
In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.Keywords: Drying, bobbin, cotton, PLC control, Visual Basic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21541932 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method
Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie
Abstract:
An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151931 Precipitation Hardening Behavior of Directly Cold Rolled Al-6Mg Alloy Containing Ternary Sc and Quaternary Zi/Ti
Authors: M. S. Kaiser
Abstract:
Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.
Keywords: Al-Mg alloys, age hardening, resistivity, metastable phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20881930 Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine
Authors: Md A. Hossain, Shabab M. Chowdhury, Yamin Rekhu, Khandakar S. Faraz, Monzur Ul Islam
Abstract:
With the growth of modern civilization and industrialization in worldwide, the demand for energy is increasing day by day. Majority of the world-s energy needs are met through fossil fuels and natural gas. As a result the amount of fossil fuels is on diminishing from year to year. Since the fossil fuel is nonrenewable, so fuel price is gouging as a consequence of spiraling demand and diminishing supply. At present the power generation of our country is mainly depends on imported fossil fuels. To reduce the dependency on imported fuel, the use of renewable sources has become more popular. In Bangladesh coconut is widely growing tree. Especially in the southern part of the country a large area will be found where coconut tree is considered as natural asset. So, our endeavor was to use the coconut oil as a renewable and alternative fuel. This article shows the prospect of coconut oil as a renewable and alternative fuel of diesel fuel. Since diesel engine has a versatile uses including small electricity generation, an experimental set up is then made to study the performance of a small diesel engine using different blends of bio diesel converted from coconut oil. It is found that bio diesel has slightly different properties than diesel. With biodiesel the engine is capable of running without difficulty. Different blends of bio diesel (i.e. B80, B60, and B 50 etc.) have been used to avoid complicated modification of the engine or the fuel supply system. Finally, a comparison of engine performance for different blends of biodiesel has been carried out to determine the optimum blend for different operating conditions.Keywords: Biodiesel, Bio-fuel, Renewable Energy, Transesterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97601929 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate
Authors: Saravana Kannan Thangavelu
Abstract:
Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215