Search results for: coupling beam.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 706

Search results for: coupling beam.

706 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: Design studies, computational model(s), case study/studies, modeling, coupling beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
705 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method

Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour

Abstract:

In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.

Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
704 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

Authors: S.H. Mirtalaie, M.A. Hajabasi

Abstract:

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Keywords: Free vibration, laminated composite beam, material coupling, state space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
703 Lateral and Longitudinal Vibration of a Rotating Flexible Beam Coupled with Torsional Vibration of a Flexible Shaft

Authors: Khaled Alnefaie

Abstract:

In this study, rotating flexible shaft-disk system having flexible beams is considered as a dynamic system. After neglecting nonlinear terms, torsional vibration of the shaft-disk system and lateral and longitudinal vibration of the flexible beam are still coupled through the motor speed. The system has three natural frequencies; the flexible shaft-disk system torsional natural frequency, the flexible beam lateral and longitudinal natural frequencies. Eigenvalue calculations show that while the shaft speed changes, torsional natural frequency of the shaft-disk system and the beam longitudinal natural frequency are not changing but the beam lateral natural frequency changes. Beam lateral natural frequency stays the same as the nonrotating beam lateral natural frequency ωb until the motor speed ωm is equal to ωb. After then ωb increases and remains equal to the motor speed ωm until the motor speed is equal to the shaft-disk system natural frequency ωT. Then the beam lateral natural frequency ωb becomes equal to the natural frequency ωT and stays same while the motor speed ωm is increased. Modal amplitudes and phase angles of the vibrations are also plotted against the motor speed ωm.

Keywords: Rotor dynamics, beam-shaft coupling, beam vibration, flexible shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3529
702 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour

Authors: A. M. Maqableh

Abstract:

Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.

Keywords: Fluid Coupling, Mathematical Modelling, partially filled.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
701 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
700 Dynamic Coupling Metrics for Service – Oriented Software

Authors: Pham Thi Quynh, Huynh Quyet Thang

Abstract:

Service-oriented systems have become popular and presented many advantages in develop and maintain process. The coupling is the most important attribute of services when they are integrated into a system. In this paper, we propose a suite of metrics to evaluate service-s quality according to its ability of coupling. We use the coupling metrics to measure the maintainability, reliability, testability, and reusability of services. Our proposed metrics are operated in run-time which bring more exact results.

Keywords: Dynamic coupling metric, SOA, web service, SOAP Extension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
699 Nonlinear Simulation of Harmonically Coupled Two-Beam Free-Electron Laser

Authors: M. Zahedian, B. Maraghechi, M. H. Rouhani

Abstract:

A nonlinear model of two-beam free-electron laser (FEL) in the absence of slippage is presented. The two beams are assumed to be cold with different energies and the fundamental resonance of the higher energy beam is at the third harmonic of lower energy beam. By using Maxwell-s equations and full Lorentz force equations of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth order Runge–Kutta method. In this method a considerable growth of third harmonic electromagnetic field in the XUV and X-ray regions is predicted.

Keywords: Free-electron laser, Higher energy beam, Lowerenergy beam, Two-beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
698 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
697 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5249
696 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: Beam propagation, cos-Gaussian beam, Numerical simulation, Photorefractive crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
695 Coupling Compensation of 6-DOF Parallel Robot Based on Screw Theory

Authors: Ming Cong, Yinghua Wu, Dong Liu, Haiying Wen, Junfa Yu

Abstract:

In order to improve control performance and eliminate steady, a coupling compensation for 6-DOF parallel robot is presented. Taking dynamic load Tank Simulator as the research object, this paper analyzes the coupling of 6-DOC parallel robot considering the degree of freedom of the 6-DOF parallel manipulator. The coupling angle and coupling velocity are derived based on inverse kinematics model. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude of dynamic load Tank Simulator.

Keywords: coupling compensation, screw theory, parallel robot, mechanism-model combined motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
694 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures has not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.

Keywords: Object-oriented class, software quality, class cohesion measure, class coupling measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
693 Effect of Impact Location upon Sub-Impacts between Beam and Block

Authors: T. F. Jin, X. C. Yin, P. B. Qian

Abstract:

The present investigation is concerned with sub-impacts taken placed when a rigid hemispherical-head block transversely impacts against a beam at different locations. Dynamic substructure technique for elastic-plastic impact is applied to solve numerically this problem. The time history of impact force and energy exchange between block and beam are obtained. The process of sub-impacts is analyzed from the energy exchange point of view. The results verify the influences of the impact location on impact duration, the first sub-impact and energy exchange between the beam and the block.

Keywords: Beam, sub-impact, substructure, elastic-plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
692 2-D Ablated Plasma Production Process for Pulsed Ion Beam-Solid Target Interaction

Authors: Thanat Rungsirathana, Vorathit Rungsetthaphat, Shogo Azuma, Nobuhiro Harada

Abstract:

This paper presents a 2-D hydrodynamic model of the ablated plasma when irradiating a 50 μm Al solid target with a single pulsed ion beam. The Lagrange method is used to solve the moving fluid for the ablated plasma production and formation mechanism. In the calculations, a 10-ns-single-pulsed of ion beam with a total energy density of 120 J/cm2, is used. The results show that the ablated plasma was formed after 2 ns of ion beam irradiation and it started to expand right after 4-6 ns. In addition, the 2-D model give a better understanding of pulsed ion beam-solid target ablated plasma production and expansion process clearer.

Keywords: Ablated plasma, pulse ion beam, thin foil solid target, two-dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
691 Investigation on Adjustable Mirror Bender Using Light Beam Size

Authors: A. Oonsivilai, A. Suthummapiwat, P.Songsiritthigul

Abstract:

In this research, the use of light beam size to design the adjustable mirror bender is presented. The focused beam line characterized by its size towards the synchrotron light beam line is investigated. The COSMOSWorks is used in all simulation components of curvature adjustment system to analyze in finite element method. The results based on simulation covers the use of applied forces during adjustment of the mirror radius are presented.

Keywords: Light beam-line, mirror bender, synchrotron light machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
690 Modeling and Control of Two Manipulators Handling a Flexible Beam

Authors: Amer S. Al-Yahmadi, T.C. Hsia

Abstract:

This paper seeks to develop simple yet practical and efficient control scheme that enables cooperating arms to handle a flexible beam. Specifically the problem studied herein is that of two arms rigidly grasping a flexible beam and such capable of generating forces/moments in such away as to move a flexible beam along a predefined trajectory. The paper develops a sliding mode control law that provides robustness against model imperfection and uncertainty. It also provides an implicit stability proof. Simulation results for two three joint arms moving a flexible beam, are presented to validate the theoretical results.

Keywords: Sliding mode control, cooperative manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
689 Study on Distortion of Bi-Steel Concrete Beam

Authors: G. W. Ni, Y. M. Zhang, D. L. Jiang, J. N. Chen, X. G. Wang

Abstract:

As an economic and safe structure, Bi-steel is widely used in reinforced concrete with less consumption of steel. In this paper, III Bi-steel concrete beam has been analyzed. Through careful observation and theoretical analysis, the new calculating formulae for structural rigidity and crack have been formulated for this Bi-steel concrete beam. And structural rigidity and the crack features have also been theoretically analyzed.

Keywords: Bi-steel, concrete beam, crack, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
688 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna

Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn

Abstract:

To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.

Keywords: Switched beam, shorted circuit, single element, signal to interference ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
687 Application of Cite Space Software in Visual Analysis of Land Use Coupling Research Progress

Authors: Jing Zhou, Weiqun Su, Naying Luo, Min Shang, Li Wu

Abstract:

The coupling of land use system in geographical research is mainly the coupling of pattern and process, which is essentially the human-land coupling, and is an important part of the research and discussion of human-land relationship. Based on the Web of Science database, the paper titles, authors, keywords, and references from 1997-2020 related to land use coupling were used as data sources to explore the research progress of land use coupling. Cite Space bibliometric tool was used for co-occurrence analysis of the issuing country, issuing institution, co-cited author, disciplinary institution, and keywords. The results are shown as follows: (1) From 1997 to 2020, the United States, China, and Germany rank the top, with more than 250 published papers. Although China ranks second in the number of published papers on foreign literature, it has less centrality and less influence. (2) The top 10 institutions (universities) in the number of published papers (more than 300 articles) are mainly from the United States and China, and the University of Chinese Academy of Sciences has the highest output of papers. At the same time, the phenomenon of multi-institutional cooperation has increased in the field of land use coupling research. (3) From 1997 to 2020, land sensitivity research and the impact of climate change on land use patterns are the main directions of land use coupling research. However, in the past five years, scholars have mainly focused on the coupling research methods of land use and the coupling relationship between ecological and environmental factors and land use.

Keywords: Land use coupling, cite space, knowledge graph, visual analysis, research progress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
686 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous wavelet transform, flexible coupling, rotor system, sub critical speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
685 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
684 Introduction of the Fluid-Structure Coupling into the Force Analysis Technique

Authors: Océane Grosset, Charles Pézerat, Jean-Hugh Thomas, Frédéric Ablitzer

Abstract:

This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented.

Keywords: Fluid-structure coupling, inverse methods, naval, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
683 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines

Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines. 

Keywords: Beam deformation, EPS block, laboratory test, post-beam system, soil surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
682 Increasing Directional Intensity of Output Light Beam from Photonic Crystal Slab Outlet Including Micro Cavity Resonators

Authors: A. Mobini, K. Saghafi, V. Ahmadi

Abstract:

in this paper we modified a simple two-dimensional photonic crystal waveguide by creating micro cavity resonators in order to increase the output light emission which can be applicable to photonic integrated circuits. The micro cavity resonators are constructed by removing two tubes close to the waveguide output. Coupling emitted light from waveguide with those micro cavities, results increasing intensity of waveguide output light. Inserting a tube in last row of waveguide, we have improved directionality of output light beam.

Keywords: photonic crystal, waveguide, micro cavity resonators, directional emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
681 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen

Abstract:

This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
680 Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

Authors: I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract:

We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ, λγ) and (Δκz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb^-1.

Keywords: Anomalous Couplings, Future Circular Collider, Large Hadron electron Collider, W-boson and Z-boson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
679 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

Authors: L. Dahmani, M.Kouane

Abstract:

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
678 Reducing the Need for Multi-Input Multi-Output in Multi-Beam Base Transceiver Station Antennas Using Orthogonally-Polarized Feeds with an Arbitrary Number of Ports

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A multi-beam BTS (Base Transceiver Station) antenna has been developed using dual parabolic cylindrical reflectors. The ±45° polarization feeds are used in spatial diversity MIMO (Multi-Input Multi-Output). They can be replaced by single-port orthogonally polarized feeds. Then, with two sets of beams generated above each other, the ± 45° polarization ports of any conventional transceiver can be connected to two of these beam sets. Thus, with two-port transceivers, the system will be equivalent to 4x4 MIMO, instead of 2x2. Radio Frequency (RF) power combiners/splitters can also be used to combine the multiple beams into a single beam or any arbitrary number of beams/ports. The gain of the combined-beam will be more than 20-24 dBi instead of 17-18 dBi of conventional wide-beam antennas. Furthermore, the gain of the combined beam will be high over the whole beam angle. Moreover, the users will always be close to the peak gain value of the combined beam regardless of their location within the combined beam angle. The frequency bands of all the combined beams are adjusted such that they all have the same frequency band. Different configurations of RF power splitter/combiners can be used to provide any arbitrary number of beams/ports according to the requirements of any existing base station configuration.

Keywords: 5G mobile communications, BTS antennas, MIMO, orthogonally polarized antennas, multi-beam antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
677 Beam Orientation Optimization Using Ant Colony Optimization in Intensity Modulated Radiation Therapy

Authors: Xi Pei, Ruifen Cao, Hui Liu, Chufeng Jin, Mengyun Cheng, Huaqing Zheng, Yican Wu, FDS Team

Abstract:

In intensity modulated radiation therapy (IMRT) treatment planning, beam angles are usually preselected on the basis of experience and intuition. Therefore, getting an appropriate beam configuration needs a very long time. Based on the present situation, the paper puts forward beam orientation optimization using ant colony optimization (ACO). We use ant colony optimization to select the beam configurations, after getting the beam configuration using Conjugate Gradient (CG) algorithm to optimize the intensity profiles. Combining with the information of the effect of pencil beam, we can get the global optimal solution accelerating. In order to verify the feasibility of the presented method, a simulated and clinical case was tested, compared with dose-volume histogram and isodose line between target area and organ at risk. The results showed that the effect was improved after optimizing beam configurations. The optimization approach could make treatment planning meet clinical requirements more efficiently, so it had extensive application perspective.

Keywords: intensity modulated radiation therapy, ant colonyoptimization, Conjugate Gradient algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960