Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Search results for: Abiodun M. Aibinu

9 MRI Reconstruction Using Discrete Fourier Transform: A tutorial

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.

Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4798
8 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.

Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
7 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
6 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
5 Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract

Authors: Olufunke O. Ezekiel, Abiodun A. Oriku

Abstract:

The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.

Keywords: Cottonseed, boiling, extract, fermentation, True protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
4 A Preference-Based Multi-Agent Data Mining Framework for Social Network Service Users' Decision Making

Authors: Ileladewa Adeoye Abiodun, Cheng Wai Khuen

Abstract:

Multi-Agent Systems (MAS) emerged in the pursuit to improve our standard of living, and hence can manifest complex human behaviors such as communication, decision making, negotiation and self-organization. The Social Network Services (SNSs) have attracted millions of users, many of whom have integrated these sites into their daily practices. The domains of MAS and SNS have lots of similarities such as architecture, features and functions. Exploring social network users- behavior through multiagent model is therefore our research focus, in order to generate more accurate and meaningful information to SNS users. An application of MAS is the e-Auction and e-Rental services of the Universiti Cyber AgenT(UniCAT), a Social Network for students in Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia, built around the Belief- Desire-Intention (BDI) model. However, in spite of the various advantages of the BDI model, it has also been discovered to have some shortcomings. This paper therefore proposes a multi-agent framework utilizing a modified BDI model- Belief-Desire-Intention in Dynamic and Uncertain Situations (BDIDUS), using UniCAT system as a case study.

Keywords: Distributed Data Mining, Multi-Agent Systems, Preference-Based, SNS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
3 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan

Abstract:

The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

Keywords: Logistic Regression LoR, Kernel Density Estimator KDE, Handwriting, Confidence Interval, Repeatability, Reproducibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
2 Investigating the Efficacy of HIV/AIDS Psycho-Education and Behavioural Skills Training in Reducing Sexual Risk Behaviours in a Trucking Population in Nigeria

Authors: Abiodun M. Lawal, Benjamin O. Olley

Abstract:

Long Distance Truck Drivers (LDTDs) have been found to be a high risk group in the spread of HIV/AIDS globally; perhaps, due to their high Sexual Risk Behaviours (SRBs). Interventions for reducing SRBs in trucking population have not been fully exploited. A quasi-experimental control group pretest-posttest design was used to assess the efficacy of psycho-education and behavioural skills training in reducing SRBs among LDTDs. Sixteen drivers rivers were randomly assigned into either experimental or control groups using balloting technique. Questionnaire was used as an instrument for data collection. Repeated measures t-test and independent t-test were used to test hypotheses. Intervention had significant effect on the SRBs among LDTDs at post-test (t{7}= 6.01, p<.01) and at follow up (t{7} = 6.42, p<.01). No significant difference in sexual risk behaviour of LDTDs at post-test and at follow-up stage. Similarly, intervention had significant effects on sexual risk behaviour at post-test (t {14} = - 4.69, p<.05) and at follow-up (t {14} = -9.56, p<.05) respectively. At post-test and follow-up stages, drivers in experimental group reported reduced SRBs than those in control group. Drivers in experimental group reported lower sexual risk behaviour a week after intervention as well as at three months follow-up than those in control group. It is concluded that HIV/AIDS preventive intervention that provides the necessary informational and behavioural skills content can significantly impact long distance truck drivers’ sexual risk behaviours.

Keywords: HIV/AIDS interventions, Long distance truck drivers, Nigeria, Sexual risk behaviours.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria

Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi

Abstract:

The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.

Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566