Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30855
Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, B. K. Cho, V. Brinzari


The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: Nanocomposites, Stability, power factor, Thermoelectricity, energy conversion technologies, In2O3-based films

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012


[1] A. Date, A. Date, C. Dixon, A. Akbarzadeh, “Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation”, Renew. Sustain. Energy Rev., vol. 33, pp. 371–381, 2014.
[2] D.M. Rowe (ed.), “CRC Handbook of Thermoelectrics”, CRC, Boca Raton, USA, 1995.
[3] A.J. Minnnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ. Sci., vol. 2, pp. 466–479, 2009.
[4] K. Koumoto, Y. Wang, Z. Zhang, A. Kosuga, R. Funahashi, “Oxide thermoelectric materials: a nanostructuring approach”, Annu. Rev. Mater. Res., vol. 40, pp. 363–394, 2010.
[5] K. Kishimoto, K. Yamamoto, T. Koyanagi, “Influences of potential barrier scattering on the thermoelectric, properties of sintered n-type PbTe with a small grain size”, Jpn. J. Appl. Phys., vol. 42 (Part 1, No. 2A), pp. 501–508, 2003.
[6] M. Ohtaki, “Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source”, J. Ceram. Soc. Jpn., vol. 119(1395), pp. 770–775, 2011.
[7] J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, “High-performance nanostructured thermoelectric materials”, NPG Asia Materials, vol. 2(4), pp. 152–158, 2010.
[8] J.H. Bahk, Z.X. Bian, A. Shakouri, “Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials”, Phys. Rev. B, vol. 87(7), 075204, 2013.
[9] G. Korotcenkov, V. Brinzari, L. Trakhtenberg, B.K. Cho, “In2O3-based thin films deposited by spray pyrolysis as promising thermoelectric material”, Adv. Mater. Res., vol. 1043, pp. 40–44, 2014.
[10] G. Korotcenkov, V. Brinzari, B.K. Cho, “In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications”, Solid State Sci. vol. 52, pp. 141–148, 2016.
[11] P. Agoston, K. Albe, “Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces”, Phys. Rev. B, vol. 84(4), 045311, 2011.
[12] O. Bierwagen, “Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications”, Semicond. Sci. Technol., vol. 30, 024001, 2015.
[13] G. Korotcenkov, “Metal oxides for solid state gas sensors: What determines our choice?” Mater. Sci. Eng. B, vol. 139, pp. 1–23, 2007.
[14] G. Korotcenkov, B.K. Cho, V. Brinzari, “Spray pyrolysis of metal oxides SnO2 and In2O3 as an example of thin film technology: Advantages and limitations for application in conductometric gas sensors”, Adv. Mater. Res., vol. 748, pp. 22–27, 2013.
[15] G.J. Snyder, E.S. Toberer, “Complex thermoelectric materials”, Nat. Mater, vol. 7, pp. 105–114, 2008.
[16] G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, “The influence of film structure on In2O3 gas response”, Thin Solid Films vol. 460, pp. 308–316, 2004.
[17] G. Korotcenkov, V. Brinzari, J.R. Stetter, I. Blinov, V. Blaja, “The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response”, Sens. Actuators B, vol. 128, pp. 51–63, 2007.
[18] G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, J. Morante, “Structural stability of In2O3 films deposited by spray pyrolysis during thermal annealing”, Thin Solid Films vol. 479 (1-2), pp. 38–51, 2005.
[19] W.J. Macklin, P.T. Moseley, “On the use of oxides for thermoelectric refrigeration”, Mater. Sci. Eng. B, vol. 7, pp. 111–117, 1990.
[20] E. Guilmeau, D. Bérardan, Ch. Simon, A. Maignan, B. Raveau, D. Ovono Ovono, F. Delorme, “Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at in-site”, J. Appl. Phys., vol. 106, 053715, 2009.
[21] D. Berardan, E. Guilmeau, A. Maignan, B. Raveau, In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun., vol. 146(1-2), pp. 97–101, 2008.
[22] J. Lan, Y.-H. Lin, Y. Liu, S. Xu, C.-W. Nan, “High thermoelectric performance of nanostructured In2O3-based ceramics”, J. Am. Ceram. Soc., vol. 95 (8), pp. 2465–2469, 2012.
[23] V. Brinzari, I. Damaskin, L. Trakhtenberg, B.K. Cho, G. Korotcenkov, “Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin”, Thin Solid Films, vol. 552, pp. 225–231, 2014.
[24] L.D. Hicks, M.S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, vol. 47, pp. 12727–12731, 1993.
[25] V. Brinzari, D.L. Nika, I. Damaskin, B.K. Cho, G. Korotcenkov, “Electrical conductivity and Seebeck coefficient of nanoscaled indium-tin-oxide within the electron filtering model”, Physica E, (2016) (in press).
[26] G. Korotcenkov, B.K. Cho, “The role of the grain size on thermal stability of nanostructured SnO2 and In2O3 metal oxides films aimed for gas sensor application”, Prog. Crystal. Growth vol. 58, pp. 167–208, 2012.
[27] N.A. Vorobyeva, M.N. Rumyantseva, P.A. Forsh, A.M. Gaskov, “Conductivity of nanocrystalline ZnO(Ga)”, Semiconductors, vol. 47 (5), pp. 650–654, 2013.
[28] W. Göpel, “Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors”, Prog. Surf. Sci., vol. 20, pp. 9–103, 1985.
[29] M.J. Madou, S.R. Morrision, “Chemical Sensing with Solid State Devices”, Academic Press, Boston 1989.