Search results for: mobile robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1167

Search results for: mobile robot

1047 Abnormal IP Packets on 3G Mobile Data Networks

Authors: Joo-Hyung Oh, Dongwan Kang, JunHyung Cho, Chaetae Im

Abstract:

As the mobile Internet has become widespread in recent years, communication based on mobile networks is increasing. As a result, security threats have been posed with regard to the abnormal traffic of mobile networks, but mobile security has been handled with focus on threats posed by mobile malicious codes, and researches on security threats to the mobile network itself have not attracted much attention. In mobile networks, the IP address of the data packet is a very important factor for billing purposes. If one mobile terminal use an incorrect IP address that either does not exist or could be assigned to another mobile terminal, billing policy will cause problems. We monitor and analyze 3G mobile data networks traffics for a period of time and finds some abnormal IP packets. In this paper, we analyze the reason for abnormal IP packets on 3G Mobile Data Networks. And we also propose an algorithm based on IP address table that contains addresses currently in use within the mobile data network to detect abnormal IP packets.

Keywords: WCDMA, 3G, Abnormal IP address, Mobile Data Network Attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
1046 Security Threat and Countermeasure on 3G Network

Authors: Dongwan Kang, Joohyung Oh, Chaetae Im

Abstract:

Recent communications environment significantly expands the mobile environment. The popularization of smartphones with various mobile services has emerged, and smartphone users are rapidly increasing. Because of these symptoms, existing wired environment in a variety of mobile traffic entering to mobile network has threatened the stability of the mobile network. Unlike traditional wired infrastructure, mobile networks has limited radio resources and signaling procedures for complex radio resource management. So these traffic is not a problem in wired networks but mobile networks, it can be a threat. In this paper, we analyze the security threats in mobile networks and provide direction to solve it.

Keywords: 3G, Core Network Security, GTP, Mobile NetworkSecurity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
1045 Designing of Multi-Agent Rescue Robot: Development and Basic Experiments of Master-Slave Type Rescue Robots

Authors: J. Lin, T. C. Kuo, C. -Y. Gau, K. C. Liu, Y. J. Huang, J. D. Yu, Y. W. Lin

Abstract:

A multi-agent type robot for disaster response in calamity scene is proposed in this paper. The proposed grouped rescue robots can perform cooperative reconnaissance and surveillance to achieve a given rescue mission. The multi-agent rescue of dual set robot consists of one master set and three slave units. The research for this rescue robot system is going to detect at harmful environment where human is unreachable, such as the building is infected with virus or the factory has hazardous liquid in effluent. As a dual set robot, with Bluetooth and communication network, the master set can connect with slave units and send information back to computer by wireless and monitor. Therefore, rescuer can be informed the real-time information in a calamity area. Furthermore, each slave robot is able to obstacle avoidance by ultrasonic sensors, and encodes distance and location by compass. The master robot can integrate every devices information to increase the efficiency of prospected and research unknown area.

Keywords: Designing of multi-agent rescue robot, development and basic experiments of master-slave type rescue robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1044 An Artificial Immune System for a Multi Agent Robotics System

Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair

Abstract:

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
1043 Motion Capture Based Wizard of Oz Technique for Humanoid Robot

Authors: Rafal Stegierski, Krzysztof Dmitruk

Abstract:

The paper focus on robotic telepresence system build around humanoid robot operated with controller-less Wizard of Oz technique. Proposed solution gives possibility to quick start acting as a operator with short, if any, initial training.

Keywords: Robotics, Motion Capture, Wizard of Oz, Humanoid Robots, Human Robot Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1042 Mobile Robot Control by Von Neumann Computer

Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov

Abstract:

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
1041 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: Kinematics, degree of freedom, optimization, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6100
1040 A Hybrid Distributed Vision System for Robot Localization

Authors: Hsiang-Wen Hsieh, Chin-Chia Wu, Hung-Hsiu Yu, Shu-Fan Liu

Abstract:

Localization is one of the critical issues in the field of robot navigation. With an accurate estimate of the robot pose, robots will be capable of navigating in the environment autonomously and efficiently. In this paper, a hybrid Distributed Vision System (DVS) for robot localization is presented. The presented approach integrates odometry data from robot and images captured from overhead cameras installed in the environment to help reduce possibilities of fail localization due to effects of illumination, encoder accumulated errors, and low quality range data. An odometry-based motion model is applied to predict robot poses, and robot images captured by overhead cameras are then used to update pose estimates with HSV histogram-based measurement model. Experiment results show the presented approach could localize robots in a global world coordinate system with localization errors within 100mm.

Keywords: Distributed Vision System, Localization, Measurement model, Motion model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
1039 Implementation of Terrain Rendering on Mobile Device

Authors: S.A.M. Isa, M.S.M. Rahim, M.D. Kasmuni, D. Daman

Abstract:

Recently, there are significant improvements in the capabilities of mobile devices; rendering large terrain is tedious because of the constraint in resources of mobile devices. This paper focuses on the implementation of terrain rendering on mobile device to observe some issues and current constraints occurred. Experiments are performed using two datasets with results based on rendering speed and appearance to ascertain both the issues and constraints. The result shows a downfall of frame rate performance because of the increase of triangles. Since the resolution between computer and mobile device is different, the terrain surface on mobile device looks more unrealistic compared to on a computer. Thus, more attention in the development of terrain rendering on mobile devices is required. The problems highlighted in this paper will be the focus of future research and will be a great importance for 3D visualization on mobile device.

Keywords: Mobile Device, Mobile Rendering, OpenGL ES, Terrain Rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1038 Cooperative Multi Agent Soccer Robot Team

Authors: Vahid Rostami, Saeed Ebrahimijam, P.khajehpoor, P.Mirzaei, Mahdi Yousefiazar

Abstract:

This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.

Keywords: Robocup, Soccer robots, Fuzzy controller, Multi agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1037 Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

Authors: Tawiwat V., Tosapolporn P., Kedit J.

Abstract:

This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.

Keywords: RRP robot, Optimal Control, Minimum Energy and Under Actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1036 Partial Connection Architecture for Mobile Computing

Authors: Phyoung Jung Kim, Seogyun Kim

Abstract:

In mobile computing environments, there are many new non existing problems in the distributed system, which is consisted of stationary hosts because of host mobility, sudden disconnection by handoff in wireless networks, voluntary disconnection for efficient power consumption of a mobile host, etc. To solve the problems, we proposed the architecture of Partial Connection Manager (PCM) in this paper. PCM creates the limited number of mobile agents according to priority, sends them in parallel to servers, and combines the results to process the user request rapidly. In applying the proposed PCM to the mobile market agent service, we understand that the mobile agent technique could be suited for the mobile computing environment and the partial connection problem management.

Keywords: Mobile agent, mobile computing, partial connection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1035 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique

Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda

Abstract:

This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.

Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1034 Modeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications

Authors: Chen Wang, Amir Anvar

Abstract:

This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing glider design. It may be also used to validate a robot glider design.

Keywords: AUV, underwater glider, robot, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
1033 Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm

Authors: T.C. Manjunath,

Abstract:

This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.

Keywords: SCARA, Trajectory, Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4223
1032 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1031 Controlling 6R Robot by Visionary System

Authors: Azamossadat Nourbakhsh, Moharram Habibnezhad Korayem

Abstract:

In the visual servoing systems, the data obtained by Visionary is used for controlling robots. In this project, at first the simulator which was proposed for simulating the performance of a 6R robot before, was examined in terms of software and test, and in the proposed simulator, existing defects were obviated. In the first version of simulation, the robot was directed toward the target object only in a Position-based method using two cameras in the environment. In the new version of the software, three cameras were used simultaneously. The camera which is installed as eye-inhand on the end-effector of the robot is used for visual servoing in a Feature-based method. The target object is recognized according to its characteristics and the robot is directed toward the object in compliance with an algorithm similar to the function of human-s eyes. Then, the function and accuracy of the operation of the robot are examined through Position-based visual servoing method using two cameras installed as eye-to-hand in the environment. Finally, the obtained results are tested under ANSI-RIA R15.05-2 standard.

Keywords: 6R Robot , camera, visual servoing, Feature-based visual servoing, Position-based visual servoing, Performance tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
1030 Specialized Web Robot for Objectionable Web Content Classification

Authors: SuGil Choi, SeungWan Han, Chi-Yoon Jeong, TaekYong Nam

Abstract:

This paper proposes a specialized Web robot to automatically collect objectionable Web contents for use in an objectionable Web content classification system, which creates the URL database of objectionable Web contents. It aims at shortening the update period of the DB, increasing the number of URLs in the DB, and enhancing the accuracy of the information in the DB.

Keywords: Web robot, objectionable Web content classification, URL database, URL rating

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1029 Visual Tag-based Location-Aware System for Household Robots

Authors: Yen-Chun Lin, Yen-Ting Chen, Szu-Yin Lin, Jen-Hua Wu

Abstract:

This paper proposes a location-aware system for household robots which allows users to paste predefined paper tags at different locations according to users- comprehension of the house. In this system a household robot may be aware of its location and the attributes thereof by visually recognizing the tags when the robot is moving. This paper also presents a novel user interface to define a moving path of the robot, which allows users to draw the path in the air with a finger so as to generate commands for following motions.

Keywords: finger tip tracking, household robot, location awareness, tag recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
1028 The Influence of Mobile Phone's Forms in the User Perception

Authors: The Jaya Suteja, Stephany Tedjohartoko

Abstract:

Not all types of mobile phone are successful in entering the market because some types of the mobile phone have a negative perception of user. Therefore, it is important to understand the influence of mobile phone's characteristics in the local user perception. This research investigates the influence of QWERTY mobile phone's forms in the perception of Indonesian user. First, some alternatives of mobile phone-s form are developed based on a certain number of mobile phone's models. At the second stage, some word pairs as design attributes of the mobile phone are chosen to represent the user perception of mobile phone. At the final stage, a survey is conducted to investigate the influence of the developed form alternatives to the user perception. Based on the research, users perceive mobile phone's form with curved top and straight bottom shapes and mobile phone's form with slider and antenna as the most negative form. Meanwhile, mobile phone's form with curved top and bottom shapes and mobile phone-s form without slider and antenna are perceived by the user as the most positive form.

Keywords: Influence, mobile phone, form, user perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1027 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
1026 Security of Mobile Agent in Ad hoc Network using Threshold Cryptography

Authors: S.M. Sarwarul Islam Rizvi, Zinat Sultana, Bo Sun, Md. Washiqul Islam

Abstract:

In a very simple form a Mobile Agent is an independent piece of code that has mobility and autonomy behavior. One of the main advantages of using Mobile Agent in a network is - it reduces network traffic load. In an, ad hoc network Mobile Agent can be used to protect the network by using agent based IDS or IPS. Besides, to deploy dynamic software in the network or to retrieve information from network nodes Mobile Agent can be useful. But in an ad hoc network the Mobile Agent itself needs some security. Security services should be guaranteed both for Mobile Agent and for Agent Server. In this paper to protect the Mobile Agent and Agent Server in an ad hoc network we have proposed a solution which is based on Threshold Cryptography, a new vibe in the cryptographic world where trust is distributed among multiple nodes in the network.

Keywords: Ad hoc network, Mobile Agent, Security, Threats, Threshold Cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1025 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization

Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman

Abstract:

The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.

Keywords: Preview control, walking, stabilization, humanoid robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
1024 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator

Authors: A. Y. Bani Hashim, N. S. A. Ramdan

Abstract:

Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.

Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1023 Two Wheels Balancing Robot with Line Following Capability

Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon

Abstract:

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Keywords: infra-red sensor, PID algorithms, line followerBalancing robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524
1022 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: Autonomic, self-adaption, self-healing, self-optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
1021 Simulation-Based Diversity Management in Human-Robot Collaborative Scenarios

Authors: Titanilla Komenda, Viktorio Malisa

Abstract:

In this paper, the influence of diversity-related factors on the design of collaborative scenarios is analysed. Based on the evaluation, a framework for simulating human-robot-collaboration is presented that considers both human factors as well as the overall system performance. The implementation of the model is shown on a real-life scenario from industry and validated in terms of traceability, safety and physical limitations. By comparing scenarios that consider diversity with those only meeting system performance, an overall understanding of individually adapted human-robot-collaborative workspaces is reached. A diversity-related guideline for human-robot-collaborations provides a summary of the research and aids in optimizing future applications. Finally, limitations and future amendments of the model are discussed.

Keywords: Diversity, human-machine-system, human-robot-collaboration, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
1020 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System

Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami

Abstract:

In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.

Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
1019 Robot Path Planning in 3D Space Using Binary Integer Programming

Authors: Ellips Masehian, Golnaz Habibi

Abstract:

This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.

Keywords: 3D C-space, Binary Integer Programming (BIP), Delaunay Tessellation, Robot Motion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
1018 A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm

Authors: Jae Kyung Son, Wan Shik Jang, Sung hyun Shim, Yoon Gyung Sung

Abstract:

This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Keywords: Vision control algorithm, location of obstacle region, range of obstacle region, point placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402