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Abstract—This paper presents a novel algorithm for path planning 

of mobile robots in known 3D environments using Binary Integer 
Programming (BIP). In this approach the problem of path planning is 
formulated as a BIP with variables taken from 3D Delaunay 
Triangulation of the Free Configuration Space and solved to obtain 
an optimal channel made of connected tetrahedrons. The 3D channel 
is then partitioned into convex fragments which are used to build safe 
and short paths within from Start to Goal. The algorithm is simple, 
complete, does not suffer from local minima, and is applicable to 
different workspaces with convex and concave polyhedral obstacles. 
The noticeable feature of this algorithm is that it is simply extendable 
to n-D Configuration spaces. 
 

Keywords—3D C-space, Binary Integer Programming (BIP), 
Delaunay Tessellation, Robot Motion Planning. 

I. INTRODUCTION 
HE Robot motion planning problem first emerged in 
1960's when researchers were trying to endow the 

primitive robotic mechanisms with autonomy and intelligence 
to find collision-free paths from start to goal. The motion 
planning problem however proved to be PSPACE-hard and 
NP-complete [4]. The dimension of the environment is a 
decisive factor influencing the complexity of motion planning. 
In Fact, what makes Motion Planning hard is the 
dimensionality of the C-space, i.e., the space of all possible 
motions of the robot. Planning in 2D environments is the 
easiest one, while the 3D and higher-dimensional problems 
call for a challenge. 
 In this paper a new solution is proposed for the path 
planning problem for a robot in 3D Configuration Space. The 
presented model is a novel composition of known path 
planning methods and linear algebra techniques. First, we will 
briefly review some path planning techniques relevant to our 
work. Next, the model is presented in its 3 main phases: 
workspace tessellation, optimal channel finding, and path 
finding. The last sections of the paper deal with experiments 
and comparisons, as well as further discussions. 

A. Motion Planning 
Many solution methods for robot motion planning are 

variations of a few general approaches: Roadmap, Cell 
Decomposition, and Potential Fields methods, which are 
broadly surveyed in [6],[7] and [12]. Also, heuristic methods 
have gained a wide popularity in recent years [9]. 
 

Authors are with Faculty of Engineering, Tarbiat Modares University, 
Tehran, Iran. 

The Visibility Graph is a roadmap which is the collection of 
lines in the free space connecting the feature of an object, 
usually vertices, to that of another object. For higher-
dimensional spaces than 2D, the visibility graph can be 
constructed from the vertices of polyhedra, but the shortest 
path then no longer lies in the visibility graph. Therefore, 
visibility graphs are impractical in for 2D motion planning. 
 Voronoi Diagram is defined as the set of points equidistant 
from two or more object features, and is used widely in 
motion planning, especially in low dimensions, such as [3] 
and [14]. Generalizing Voronoi Diagrams to higher spaces is a 
challenging problem and there are some works in this respect 
as [16], [6], and [5]. 
 The Voronoi diagram has a dual problem, the Delaunay 
Triangulation DT(S), which is obtained with a line segment 
between any two points p and q in the set of points S, for 
which a circle C exists that passes through p and q and does 
not contain any other site of S in its interior or boundary [1]. 
The edges of DT(S) are called Delaunay edges. 
 The Delaunay Triangulation can also be extended to 3 and 
higher dimensional spaces, and so there are Delaunay Edges 
and Faces. In this case, the workspace is decomposed to 
tetrahedrons such that the sphere passing through the vertices 
of each tetrahedron doesn't contain other vertices (Fig. 1).  It 
is also the dual of 3D Voronoi Diagram [2]. 

 
Fig. 1 Tetrahedrons are formed by 3D Delaunay Triangulation 

 In Potential Fields (PF) method, the robot is treated as a 
point represented in C-space as a particle under the influence 
of an artificial potential field which can be defined over free 
space as the sum of an attractive potential pulling the robot 
toward the goal configuration, and repulsive potentials 
pushing the robot away from the obstacles [12]. Although PF 
can easily be extended to 3D spaces, the problem of falling in 
local minima exists. In [17] a PF model for path planning is 
presented where the steady state heat transfer (as potential 
function) is simulated with variable thermal conductivity. 
 The Cell Decomposition approach divides the free 
configuration space (Cfree) into a set of non-overlapping cells. 
The adjacency relationships between cells are represented by a 
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Connectivity Graph. The graph is then searched for a collision 
free path. A solution is obtained by finding the cells that 
contain the initial and final configurations and then connecting 
them using a sequence of connected cells. If the union of these 
cells is exactly equal to Cfree, then the approach is called exact 
cell decomposition (which uses the object boundaries to 
generate the cell boundaries, hence object dependent), 
otherwise, it is called approximate (which partitions the C-
space into cells of a simple shape and then computes if the cell 
is in Cfree, hence object independent) [10]. The idea of using 
Cell decomposition for RMP was used in [11]. In our 
proposed method, the Cfree is exactly decomposed into 
Delaunay Tetrahedrons. 

B. Linear Programming 
Linear Programming (LP) is an important field of 

optimization for several reasons. Many practical problems in 
operations research can be expressed as linear programming 
problems. LP is heavily used in very different disciplines, 
such as microeconomics, business management, portfolio and 
finance management, inventory management, production 
planning, resource allocation, food blending, etc., typically to 
maximize the output, or minimize the costs of the system. The 
standard form of an LP is: 

Maximize CTx , Subject to A · x ≤ b,  x ≥ 0            (1) 
 Binary Integer Programming (BIP) is a special case of LP 
where the variables have only binary 0-1 integer values. BIP 
problem is NP-hard and can be solved by methods like Branch 
and Bound (BNB) and Gomory Cut algorithms [8]. 

Compared to other applications, linear programming has 
been implemented very few in motion planning. However, a 
number of works exist, such as [5] in which methods to solve 
collision-free fuel-optimal path- and motion-planning 
problems for the reconfiguration of spacecraft formations are 
presented. The motion planning problem is formulated as a 
parameter optimization problem, the trajectory being 
parameterized by the spacecraft positions and velocities at a 
set of waypoints. Big-M relaxation is then used to formulate 
the parameter optimization as a mixed-integer linear program 
(MILP). Another work is [15] where mechanisms used to 
design a path planner with real-time and long-range 
capabilities are presented. The approach relies on converting 
the optimal control problem into a parameter optimization one 
whose horizon can be reduced by using a global cost-to-go 
function to provide an approximate cost for the tail of the 
trajectory. Thus only the short-term trajectory is being 
constantly optimized online based on a MILP formulation. 

II. OVERVIEW OF THE NEW MODEL 
 The presented path planner is a generalization of the work 
in [13] where the workspace is extended from 2D to 3D and 
n-D. It lies within the category of Cell Decomposition 
approach. However, unlike the usual procedure in 
Decomposition-based models, which builds a connectivity 
graph and then searches it to find an optimal channel of cells, 
this model implements a mathematical programming for 

finding the optimal channel. The general phases of the 
algorithm are the following:  
 1) The Cfree is tessellated through the 3D Delaunay 
Triangulation such that it is exactly decomposed into a set of 
tetrahedrons (Section III). 
 2) Each tetrahedron is associated with a variable that is 
incorporated in a 0-1 Integer Programming model with an 
appropriate objective function (Section V). The solution gives 
a set of connected tetrahedrons forming a channel. 
 3) The channel is further segmented into a number of 
convex fragments, and a safe path is calculated passing 
through the medians of the convex fragments (Section VI). 
 The following sections describe these phases in detail. 

III. WORKSPACE TESSELLATION 
 The first step for path planning is to express the workspace 
(or C-space) as a mathematical formulation. For this purpose, 
the 3D workspace is decomposed into arrangements of cells 
through 3D Delaunay Triangulation. The reason for choosing 
Delaunay triangulation for tessellating the workspace is its 
many useful optimization properties discussed in [1].   
 The input information for the 3D triangulation consists of 
the coordinates of all obstacles’ vertices and the inner corners 
of the workspace’s cuboid border. The Delaunay algorithm 
then builds a connected network of these points, forming a set 
of tetrahedrons. These tetrahedrons lie both inside the 
obstacles and the Cfree. By applying a simple checking 
algorithm, all the tetrahedrons inside obstacles can be 
identified and omitted from the tetrahedrons set, leaving ‘free’ 
tetrahedrons that build the Cfree. 
 Fig. 2(a) shows the result of the above operations. In order 
to avoid long and thin tetrahedrons or ones with wide 
extension (especially near borders), the borders can be 
segmented into equal intervals. The result of tessellating this 
variation is shown in Fig. 2(b). Note the increased regularity 
and ‘fatness’ of tetrahedrons, despite their larger number. 

(a)  

 

(b) 

 
Fig. 2 3D Delaunay Triangulation of a workspace with (a) 

unsegmented, and (b) segmented borders and obstacles 
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IV. OPTIMALITY CRITERIA 
 The presented algorithm determines an optimal channel 
among all possibilities such that the objective function of the 
optimization problem is minimized regarding to constraints of 
the problem. So, it is very crucial to establish sound and 
robust criteria for defining the objective function. 
 The objective function is the product of two matrices: a 
Weighting matrix and the Variables matrix (discussed in 
Section V). We worked out five different optimality criteria as 
follows: 
 1) Number of Tetrahedrons: This kind of weighting merely 
depends on the number of tetrahedrons, regardless of their 
size. The weighting matrix (WN) is a row vector of 1s, and so 
the system selects a Start-to-Goal channel with minimal 
number of constituting tetrahedrons.  It is useful when the 
tetrahedrons are almost equal in size. 
 2) Volume of Tetrahedrons: In this criterion, larger 
tetrahedrons have larger weights, and the objective function 
turns into the weighted sum of variables. The algorithm 
searches for a channel with the smallest volume. This criterion 
(WV) is efficient when the tetrahedrons have the same size or 
at least are similar. 
 3) Surface of Tetrahedrons: According to this criterion, 
larger tetrahedrons have larger weights. The algorithm 
searches for a channel with the smallest total surface. This 
criterion (WS) is efficient when the tetrahedrons are symmetric 
or similar. 
 4) The Diameter of Insphere of Tetrahedrons: An idea for 
defining a median path inside the channel is the diameter of 
insphere (inscribed sphere) of each tetrahedron. This 
weighting function (WI) is more efficient when tetrahedrons 
with more than two free faces are symmetric. Also, in order to 
care about the distances of Start and Goal points to their 
neighboring tetrahedrons, these distances are added to the 
diameter of inscribed sphere of neighboring triangles as their 
weights. 
  5) The Median Length of Channel: The most reliable and 
effective weighting function we found is the median length of 
channel (WM) which is defined by the median length of each 
tetrahedron. But this length is not unique since it depends on 
the size of tetrahedrons which are selected and the channel 
passes through. Therefore, it is reasonable to define the 
median length of each tetrahedron regarding to its selected 
neighbors. In this case the weighting function is as follows: 

1 ( )

i

i

Nn

ijk i j k
i j k N t

F w t t t
= < ∈

=∑ ∑        (2) 

where N(ti) is the set of indices of neighbors of ti, and wijk is 
the median length of path through tetrahedron ti. For instance, 
to calculate the median length of tetrahedron t1 with its 
neighbors being t2, t3, and t4, we have: 
 

W1 = w123×t1t2t3+ w124×t1t2t4 + w134×t1t3t4.     

 In other words, if t1 is selected while t2 and t3 are also 
selected from among t1’s neighbors, then the median length 
weight for t1 would be W1 = W123. 
 

 
Fig. 3 A channel with its median line, when tetrahedron ABCD is 

selected with its neighbors, ABDE and CDBF 

 Although this weighting function seems more efficient, this 
weighting function is nonlinear and it is in cubic form. So it is 
not convex and it doesn’t guarantee the optimal solutions. 
Moreover, it takes a long time to solve the problem with this 
weighting function. 
 It should be noted that a weighted combination of these 
weighting methods can also be applied as 

W = α1×WN + α2×WV + α3×WS + α4×WI + α5×WM.  (3) 

V.  BIP FORMULATION AND SOLUTION 
 In this phase a minimization problem with linear constraints 
is developed. The objective function to be minimized is the 
weighted sum of the variables representing all tetrahedrons in 
Cfree, which reflects a measure of optimality for the resulting 
channel. Following is a basic formulation of the problem. 
 The path planning problem can be modeled as a 0-1 Binary 
Integer Programming (BIP), with variables defined as 

1 if tetrahedron is selected
0 otherwise.i

i
t

⎧⎪
⎨
⎪⎩

=      (4) 

 In order to guarantee a continuous channel from the Start to 
Goal points, tetrahedrons building the trajectory channel must 
satisfy the following requirements: 

1. The Start and Goal tetrahedrons (tS and tG, respectively) 
must be selected. 

2. If any tetrahedron (other than tS and tG) is selected, two 
of its adjacent tetrahedrons must also be selected 
(continuity condition). 

3. Each of the Start and Goal tetrahedrons must have only 
one selected adjacent tetrahedrons (loop avoidance 
condition). 

4. To avoid looping, only two adjacent tetrahedrons of 
tetrahedrons with three free edges must be selected. 

 With the above considerations, the BIP model for finding 
the optimal channel will be: 

     Minimize  J = WT.T 

   Subject to: 
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1

1

2
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S

G

n j
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j
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3

1 1
1

3

1

3

...

3

j

j

j
p p

j

t t

t t

=

=

′ ′+ ≤∑

′ ′+ ≤∑

⎧
⎪
⎪
⎨
⎪
⎪⎩

         (7) 
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1
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=

=

′′ ′′+ ≤∑

′′ ′′+ ≤∑

⎧
⎪
⎪
⎨
⎪
⎪⎩

          (8) 

    tS  = 1, tG  = 1, ti ∈ {0, 1}, i ∉ {S, G}. 
 
 In this model, W is the column vector of weights (calculated 
from (3) with desired coefficients αi), and T is the vector of 
variables [ti,…, tk]T. The ti

j is the j th adjacent tetrahedron of ti, 
and j = 1, …, ni, in which ni = 1, 2, or 3.  
 In (7), {t′t} (t = 1, …, p)  is the set of  p tetrahedrons with 
three free adjacent tetrahedrons and t′t

j is the j th adjacent 
tetrahedron of tetrahedron t′t . 
 In (8), {t"f} (f = 1, …, q)  is the set of  q tetrahedrons with 
four free adjacent tetrahedrons and t"f

j is the j th adjacent 
tetrahedron of tetrahedron t"f. 
    There is one constraint for each tetrahedron, and so the path 
planning problem turns into an optimal planning with k+p+q 
constraints (k−2+p+q inequalities and 2 equalities), with an 
optimality criterion defined by objective function J. 

VI. PATH CALCULATION 
 Upon finding the optimal channel, the next phase is to find 
an appropriate trajectory through it. In 2D dimension the 
shortest path can be found via the Visibility Graph method, 
but in higher dimensions this method isn't as well as the 2D, 
so it is rarely used in 3D or higher dimensions. 
Another simple path is through the centers of gravity of each 
tetrahedron in the channel. However, it usually takes a zigzag 
form, which is not suitable for robot motion and acts poorly in 
the presence of compact tetrahedrons (dashed line in Fig. 4)  
 The typical method for path finding in the classic Cell 
Decomposition approach is to connect the middles of free 
faces of cells in the optimal channel. There are two options for 
connecting the middles of common faces of neighboring 

tetrahedrons building the channel: The first approach is to 
connect the gravity centers of the common faces (the dotted 
line in Fig. 4). Another way is to connect the centers of 
inscribed circle of faces. These obtained paths are mostly the 
same and they have equal lengths. While this method yields 
much smoother and shorter path than the path through the 
centers of gravity, it usually travels unduly lengthy distances 
and has a zigzag form such that it is considerably longer than 
the shortest path. 

A. Path through the Middles of Convex Fragments 
 A more efficient and smoother trajectory can be suggested 
is the path going through the middle of convex fragments of 
the optimal channel. 
 At first, beginning from the Start tetrahedron, neighboring 
tetrahedron in the channel are appended until reaching a 
tetrahedron that makes the appended set concave. By this, the 
largest possible convex fragment is formed. The next convex 
fragment starts from the next tetrahedron. Then, a path is 
calculated based on the midpoints of face borders of convex 
fragments. 
 The obtained trajectory is much shorter than the other paths 
discussed above. Besides, the fact that a convex polyhedron 
contains any line connecting any two points in the polyhedron, 
guarantees that the path is definitely located in the channel 
and does not cross the obstacles. Fig. 4 shows path planning 
based on three types of trajectories: 1) centers of gravity, 2) 
middles of common faces, and 3) middles of convex 
fragments. It is shown that the trajectory based on middle 
edges of the convex fragments is the most reliable and shortest 
path among them. 

 
Fig. 4 Path planning with the optimal channel and five trajectories 

based on 1) centers of gravity (dashed), 2) centers of inspheres (dash-
dotted), 3) centers of common faces (dotted), 4) middles of common 
faces of 5 convex fragments (thin solid), and 6) B-spline curve for 

middles of 5 convex fragments common faces (thick solid) 

B. B- Spline Curves 
 For smoothing the paths mentioned in 3D B-splines can be 
used with control points being can be one of points used for 
other paths. It is obvious that the B-spline based on path 
through convex fragments is more smooth and shortest curve. 
 For designing a shorter and smoother trajectory, sometimes 
the concaveness of a fragment can be ignored. The amount of 
concaveness can be measured by the degree of concaveness, 
which is related to the degree of the concave angle in the 
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fragment. This angle is formed between faces of the newly 
added tetrahedron and the existing fragment. Thus, the greater 
the degree of the concave angle, the more the degree of 
concaveness. The range of the degree of concaveness is 
180≤α<360, in which α = 180 represents the minimum (i.e. 
no) concaveness. For α ≤ 180, the polyhedron is convex, and 
the degree α = 360 yields the maximum concaveness. 
 When the α takes a value between 180 and 360 degrees, 
some amount of concaveness is tolerated, and the fragments 
are allowed to be somewhat concave. In return, this causes a 
shorter path passing through the middles of fragments. Note 
that with large tolerances, the path may be out of the channel 
and cross the obstacles. So the shortness and safety of the path 
must be balanced.  
 The cumulative angle error, as a result of ignoring the 
concaveness for shorter paths should be considered too. The 
threshold of the cumulative error is up to the designer, and 
smaller thresholds lead to more conservativeness. 

VII. EXPERIMENTS AND COMPARISON 
 In this section, the whole procedure of 3D path planning 
with the new method is illustrated. At first, all 3D obstacles, 
as well as the Start and Goal points are defined by the user. 
Fig. 5(a) shows a sample workspace with 2 obstacles (a 
convex and a concave) having 30 vertices. The workspace is 
then triangulated by 3D Delaunay Triangulation, which took 
0.005 seconds with a 2.3 GHz PC, shown in Fig. 5(b).  

(a)

 

(b)

 
Fig. 5a) Workspace, and b) 3D Delaunay Triangulation of the 

workspace 

 The next stage is to build the BIP model and solve it. Fig. 6 
illustrates the obtained optimal 3D channel. It took 0.038 

seconds to find the channel. In this example, the optimality 
criteria were the number of tetrahedrons and the median 
length of the channel. Also, a spline function was 
implemented to smooth the path. Fig. 7 shows the spline path 
within the optimal channel by using BIP. 

 
Fig. 6 The optimal channel by binary integer programming 

 

 
 

Fig. 7 B-Spline Path within the optimal channel 
 

 We implemented the proposed algorithm in some 
workspaces, and compared with other methods. A typical 
problem took 0.5 seconds to be solved by BIP (Fig. 8) and 
1.23 seconds by Voronoi graph (Fig. 9). 

 
 

Fig. 8 Path planning using binary integer programming 
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Fig. 9 Path planning using Voronoi Graph 

VIII. EXTENSION TO HIGHER DIMENSIONS 
 An interesting feature of the new algorithm is the ease of its 
extension to high dimensional workspaces. Since the 
algorithm’s variables are taken from the cells resulting from 
Delaunay Triangulation, the cells can be triangles (in 2D), 
tetrahedrons (in 3D), or n-polytopes (in n-D). The constraints 
remain the same in higher dimensions; the only difference is 
in the maximum number of free neighbors for each n-
polytope, which is n+1 for n-D space. The BIP formulation 
for cells other than Start and Goal cells will be 

3

1 1
1

3

1

3

3
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p p
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t t
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 In (10), {tp(d)} (p = 1, …, pn , d= 2, …, n) is the set of  p 
tetrahedrons with d+1 free adjacent n-polytopes, and tp(d) j  is 
the j th adjacent n-polytope of the n-polytope tp(d). 

IX. DISCUSSION AND CONCLUSION 
 In order to analyze the time complexity of the algorithm, we 
consider its three phases separately. The time complexity of 
constructing a 3D Delaunay Triangulation is O(nlogn), n 
being the number of all obstacle vertices [12]. Since we have 
binary integer variables, the complexity of BIP solution 
depends on the number of variables (i.e. tetrahedrons). The 
number of tetrahedrons has a linear order of n. On the other 
hand, the branching of the tetrahedrons’ connectivity graph 
occurs only at those tetrahedrons that have more than 3 

neighbors. These tetrahedrons are corresponding to Voronoi 
graph vertices and their number is in O(m), m being the 
number of obstacles. By using the Depth-Best-First search 
(expand in depth and then the best solution), the complexity of 
BIP solution becomes O(3m), and so is independent of the 
number of vertices. The time complexity of path finding is 
linear in the number of tetrahedrons building the optimal 
channel. 
 A very important property of this method is its robustness 
to workspace complexities and local minima. Since 
tetrahedrons located at the bottom of a ‘minimum well’ do not 
satisfy the condition (7), they are never selected by the solver, 
and thus never appear in the final solution. These conditions 
also prevent the selection of all three neighbors of a 
tetrahedron, which forms a loop. 
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