
Abstract—Localization is one of the critical issues in the field of 
robot navigation. With an accurate estimate of the robot pose, robots 
will be capable of navigating in the environment autonomously and 
efficiently. In this paper, a hybrid Distributed Vision System (DVS) 
for robot localization is presented. The presented approach integrates 
odometry data from robot and images captured from overhead cameras 
installed in the environment to help reduce possibilities of fail 
localization due to effects of illumination, encoder accumulated errors, 
and low quality range data. An odometry-based motion model is 
applied to predict robot poses, and robot images captured by overhead 
cameras are then used to update pose estimates with HSV 
histogram-based measurement model. Experiment results show the 
presented approach could localize robots in a global world coordinate 
system with localization errors within 100mm. 

Keywords—Distributed Vision System, Localization, 
Measurement model, Motion model. 

I. INTRODUCTION

HE main goal of localization is to estimate the robot poses 
in the environment whether maps of the environment are 

given or not [1]. When maps of the environment are available, 
robots perceive the environment with range sensors and 
localize themselves with sensor measurements and the given 
maps as well.  

With accurate localization and flexible path planning 
techniques, efficient high-level collaboration behaviors 
between multiple robots can then be achieved. Sensors 
mounted on or external to the mobile platform can both achieve 
localization of robots.  

Laser range finder and sonar are two of the most frequently 
used sensors mounted on robots to perceive the environment 
and localize themselves. Many researchers presented 
probabilistic approaches proved to improve the accuracy of 
single robot localization with these sensor types. People or 
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some moving objects will block laser or sonar beams when 
robots move in an uncontrolled environment [5]. These 
self-localized methods based on onboard sensors and internal 
encoder readings. The sensor modalities have a number of 
problems because they are easily confused in highly dynamic 
environments. Many of the approaches presented in [1] require 
manmade landmarks [4], which means that the robot has to 
localize itself with the aids of landmarks placed in the 
environment. This makes it impractical to implement in real 
world environment when moving objects, for example, people, 
occlude landmarks.  

For Distributed Vision Systems (DVSs), sensors are 
regarded as cameras mounted surround the environment and 
robots can then be localized or routed by multiple cameras [2]. 
As to traditional vision-based localization techniques, there is a 
pre-process step in which robots capture enough reference 
images from different locations in the environment and stores 
them in the database. When the robot moves around, it captures 
an image and compares that with those in the database, and then 
tries to match the most similar one to determine the robot pose 
[2,6,7]. The storage size requirement of the reference images 
will be the key issue for large-scale environments and not valid 
for unstructured environments with moving objects. A 
Distributed Vision System design [8] utilized multiple 
omni-directional cameras to track robot states with image 
matching. Another recent DVS development for robot poses 
tracking and path planning utilized learning approach [9]. A 
simulated environment with several cameras installed was 
designed to teach robots how to navigate in the simulated 
environment.  

However, once robots are entirely occluded by obstacles, 
localizations of robots may be failed with general design of 
DVS. In this paper, a hybrid DVS integrating robot odometry 
and vision sensor data is presented to localize robots. The 
presented localization technology comprises of two stages. The 
first stage is prediction of robot poses with odometry 
information from encoders while the second one is to correct 
the predictions of robot poses with vision data from overhead 
cameras. The presented localization infrastructure is illustrated 
in Fig. 1. The Pose Estimator receives odometry information 
from robot and vision data from overhead cameras and then 
updates the robot pose with final pose estimate. Only one 
reference image data and no teaching processes are required for 
the Pose Estimator.  

The next section describes the overall localization procedure 
for the Pose Estimator. We introduce the detailed hybrid 
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localization processes in Section III. Thereafter, we describe 
the experiment results of robot localization. We make 
conclusions about experiments results and future extensions in 
Section V. 

Pose Estimator

Pose Updates

Vision Data Vision Data

Odometry Data

(Update)

(Prediction)

Fig. 1 Odometry and vision data integration

II. LOCALIZATION METHODOLOGY

This section describes the overall localization procedure for 
the Pose Estimator and the coordinates transformation process 
from image plane to world coordinate. 

A. Overall Localization Procedure 
Fig. 2 depicts the overall procedure of the proposed hybrid 

DVS localization approach. There are four steps for robot 
localization: Initialization, Prediction, Update, and 
Resampling. In initialization stage, robot images captured from 
the overhead camera are converted into HSV (Hue, Saturation, 
Value) color space and then the corresponding normalized 
histograms based on color information are calculated. This is to 
identify the reference objects of interest to be tracked and can 
be done in either color calibrations for colors of interest or 
regions to be tracked within the image. Initial population of 
particles representing possible robot poses is then generated.  

As to pose prediction, robot odometry data collected from 
encoders are used to generate robot pose prediction at time step 
t , say tState . tState  is equal to ( , )t t tx y which represents the 
position and orientation of the robot. In this stage, instead of  
auto-regressive models is generated for the prediction step 
(commonly used in vision-based tracking), but an 
odometry-based motion model is designed for prediction of 
robot poses. The predicted robot poses are on global world 
reference plane (WRP). These poses are then converted into 
image plane (IP).  

After pose prediction step, particles representing possible 
robot poses on IP are determined. The region of interest (ROI) 
for each particle is determined for the calculation of weighting 
values. The weighting values indicate the similarity between 
ROI for each particle with the reference target, say robot on the 
image. The higher the weighting value is, the more likely 
certain particle (pose estimate) can represent true pose of the 
robot. 

Assign reference frame and 
convert it into HSV color 

space

Identify objects to track by 
selecting regions on the 

reference frame

Calculate reference  histogram 
and initialize particles

Capturing images from 
overhead cameras

Generate particles with 
odometry motion model

Calculate weighting factors for 
each particle and normalize 

them

Prediction Stage
(on WRP)

Update Stage
(on IP)

Resample particles according 
to normalized weighting factor

Resampling Stage
(on IP)

Transformation from WRP to 
IP

Update the pose of mobile 
platform

Initialization Stage

Transformation from IP to 
WRP

Get latest frames from 
overhead camera

Fig. 2 Overall localization procedure 

Resampling processes are then applied to generate a new set 
of particles according to the distribution of weighting values. 
Those particles with higher weighting values have higher 
probability to be duplicated. Therefore, the distribution of pose 
estimates will be converged in some small areas on IP. A 
dynamic resampling policy is designed and details are given in 
later section. All those results on IP should be converted back 
into WRP and the internal pose of robot at time step   is 
updated.  

B. Coordinates Transformation Process 
The coordinates transformation is designed to transform 

pose estimates of particles from WRP to IP (at Prediction stage) 
or from IP to WRP (after Resampling stage). In order to 
complete the coordinate transformation process, overhead 
camera’s intrinsic and extrinsic parameters in the environment 
should be calculated in advance. Extrinsic parameters represent 
the camera pose relative to the origin of WRP. 

A separate calibration steps are performed to retrieve camera 
intrinsic and extrinsic parameters and Bouget camera toolbox 
[3] is used. Intrinsic parameters are independent of the position 
and orientation of the cameras in space. They will not be 
updated if camera’s focus is not changed. A checkerboard 
patterns is used for the calibration and then extrinsic parameters 
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can be retrieved, which are the position and orientation of the 
camera written in the form of a rigid body transformation. 
Images of the testing environment are captured for camera 
calibrations and the camera’s intrinsic and extrinsic parameters 
are obtained at Step 1, shown in Fig. 3. From Step 2 to Step 3, 
the transformation matrix that relates IP and WRP is obtained. 

Step 3

Step 2

Step 1

Step 0

Prepare Image Sets for camera 
calibrations

Perform calibrations for each 
camera with Bouget camera 

toolbox

Perform coordinate transform 
from Image Plane to Camera 

Reference Plane

Yes

No

Pixel Errors accepted

Perform coordinate transform 
from Camera Reference Plane 

to world reference plane

Fig. 3 Coordinate transformation process

The obtained camera parameters are inputs for derivations of 
transformation matrix from IP to WRP. To have one unique 
transformation solution from IP to WRP, additional input of the 
robot height should be given. Equation (1) represents relations 
between camera reference plane (CRP) and WRP. cR  and cT
are extrinsic parameters obtained and wZ  indicates a constant  
value, robot height. Equation (2) is the transformation from 
CRP to IP, where K  represents intrinsic parameters. xf and 

yf  are the camera’s focal distance in units of horizontal and 

vertical pixels, respectively. ),( 00 vu  is coordinates of the 
camera’s optical center. cXX , iXX , and wXX  are coordinates 
on CRP, IP, and WRP, respectively. With these inputs and 
equation (1) & (2), equation (3) is derived that directly relates 
IP to WRP. 

cwcc TXXRXX   (1) 

1
/
/

1
cc

cc

i

i

ZY
ZX

KY
X
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III. HYBRID DVS LOCALIZATION

Fig. 2 depicts the overall localization procedure that 
comprises of Prediction, Update and Resampling stages. The 
presented hybrid DVS localization utilized particle filter 
algorithm as illustrated in Fig. 4. Step 1 is the prediction of 
robot poses that generates a particle population representing 
pose estimates for the robot. An odometry-based motion model 
is designed for the prediction. For the update stage at Step 2, no 
sonar range sensors are equipped on the testing robot as most 
researches did, but external overhead vision sensors in the 
environment instead. An HSV histogram-based model is 
utilized to evaluate the quality of pose predictions from Step 1. 
Resampling process is applied at Step 3 that generates new 
particle population according to particles’ weighting values 
from Step 2. 

Step1: Generate initial state samples Xt from Xt-1

Xt-1 Initial Sample Set Xt = {xt,m| m = 1 to N}
Motion Model (ut)
•Odometry Size of N: keep sampling until next pair of 

ut and zt has arrived

Step2: Calculate importance factor  to weight samples

{xt,m, wt,m}Zt
Measurement Model (zt)
•HSV Histogram Model

Step3: Resampling according to each wt,m

Zt,k :calculation differs accordingly
k: beam index

Prediction

Update

Step1: Generate initial state samples Xt from Xt-1

Xt-1 Initial Sample Set Xt = {xt,m| m = 1 to N}
Motion Model (ut)
•Odometry Size of N: keep sampling until next pair of 

ut and zt has arrived

Step2: Calculate importance factor  to weight samples

{xt,m, wt,m}Zt
Measurement Model (zt)
•HSV Histogram Model

Step3: Resampling according to each wt,m

Zt,k :calculation differs accordingly
k: beam index

Prediction

Update

Fig. 4 Particle filter algorithm for robot pose estimate 

A. Prediction Stage: Motion Model Design 
Normally the motion model of a wheel-based robot can be 

modeled by velocity or odometry based motion commands. In 
this paper, an odometry based motion model is designed for 
robot pose prediction. Suppose 1 ( , , )T

tX x y  is the robot pose 
estimate at time step 1t  and 1ˆ ˆ( , )t t tu x x  is the control 
command based robot odometry at time step 1t .

1
ˆˆ ˆ ˆ( , , )T

tx x y  and ˆˆ ˆ ˆ( , , )T
tx x y  are odometry 

measurements from encoders of the robot. ( , , )T
tX x y  is 
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the pose estimate  at time step t  with 1tX  and tu . In other 
words, tX  is predicted by 1tX  plus relative motion measured 
by robot odometry and noise terms. Fig. 5 illustrates the relative 
motion of robot from pose A to pose B, respectively. 

1rot

2rot

trans

ˆ

ˆ

Fig. 5 Motion model for mobile platform 

trans  is the translational distances between A and B. 1rot

and 2rot  are rotational motions from the control commands. 
These values can be calculated with equation (4) to (6). 

( , , )T
tX x y  in equation (7) represents pose estimate at 

time step t . tX is calculated iteratively with pose estimates at 

previous time step, control command, and noise terms . t̂rans ,

1r̂ot , and 2r̂ot  represent the predicted translational distance 
and rotational motion with noise terms added. i  ( 1 ~ 4i ) are 
parameters used to control the calculation of variances, 

jV

( 1 ~ 3j ). Normal distribution, (0, )jN V , is selected to draw 

random numbers for the noise terms. 

1
ˆˆ ˆ ˆ ˆ2( , )rot ATan y y x x   (4) 

2 2ˆ ˆ ˆ ˆ( ) ( )trans x x y y   (5) 

2 1
ˆ ˆ

rot rot  (6) 

1

1

1 2

ˆ ˆcos( ) 0 0
ˆ ˆ0 sin( ) 0

ˆ ˆ0 0 1

rot trans

rot trans

rot rot

x x
y y

  (7) 

Where,  
1 1 1

ˆ (0, )rot rot N V

2
ˆ (0, )trans trans N V

2 2 3
ˆ (0, )rot rot N V

1 1 1 2rot transV

2 3 4 1 2( )trans rot rotV

3 1 2 2rot transV

B. Update Stage: HSV Histogram-Based Measurement 
Model and Resampling 

Each tX  represents a particle (pose estimate) on WRP. 
Coordinate Transformation Process in Section II-B are then 
applied to it from WRP to IP as shown in Fig. 6. Once all the 

particles have been transformed to IP, a measurement model is 
then applied to calculate weighting values. An HSV 
Histogram-Based measurement model is applied to determine 
the weighting value for each particle. For images captured from 
the vision sensor, they are converted to HSV color space for 
subsequent HSV histogram value calculations. As Hue ranges 
from 0.0 to 1.0, the corresponding colors vary from red, yellow, 
green, cyan, blue, and magenta, back to red. Saturation varies 
from 0.0 to 1.0, the corresponding colors vary from unsaturated 
to saturated (no white component). For Value (brightness), 
varies also from 0.0 to 1.0, the corresponding colors become 
increasing brighter [12]. Let nH , nS , and nV  denote number 
of color sectors for individual HSV planes from image. Total 
number of discrete histogram bins, that represent particle’s 
color distribution, is defined as *nH nS nV .

IP

WRP 

Coordinate 
Transformation 

Process

: Robot : Particles (pose estimate)

Fig. 6 Particle space transformation 

Fig. 7 shows bins and histogram values that represent the 
HSV color distribution for one particle. Fig. 7 (a) is the target 
histogram (a particle enclosed by rectangle checking area, ROI) 
while (b) is the reference histogram (representing robot 
template). Comparison of these two histograms yields the 
weighting value for the particle. The weighting value indicates 
similarity of the projected particles and the reference model. If 
color distribution within the region of interest (ROI) covering 
the particle is similar to that of reference image, higher 
weighting value is obtained. To specifically calculate the 
similarities between these two distributions, Bhattacharyya 
distance [11] is adopted to measure similarity of two discrete 
probability distributions r  and s .

BinBin

H
is

to
gr

am
 V

al
ue

H
is

to
gr

am
 V

al
ue

Target Histogram Reference Histogram

(a)                    (b) 
Fig. 7 Histogram-based measurement model
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Equation (8) is Bhattacharyya distance calculation. The 
calculated distance value is the weighting value for each 
particle. These weighting values are then used to determine the 
priority and resampling policy for particle population at next 
time step. 

( , ) ( ) ( )
x X

Dsq r s r x s x  (8) 

The number of particles required for robot poses estimates at 
each time step determines accuracy of pose estimates and total 
image frames the system can process per second. A resampling 
policy is designed to flexibly adjust the number of particles 
according to the calculated weighting values. Let ( , )t

i iDsq r s

be the calculated weighting value of the thi  particle at time step 
t , numParticles  be the initial variable that represents number 
of particles, and tpFactor  be the adjustment variable for 
particle numbers at time step t . The adjusted particle numbers 
at time step t , tadjParticles , can then be calculated as 

equation (9), where tpFactor  is determined by equation (10): 

*t t tadjParticles numParticles pFactor   (9) 

1, max( ) ( 1... )
1 ,

max( )

t t
i

t
i

if Dsq i numParticlest
otherwise

Dsq

pFactor   (10) 

Where, (0 1)

IV. EXPERIMENTS DISCUSSIONS

Two general web cameras, LogicTech pro5000, and one 
wheel-based mobile platform equipped with encoders are 
selected for the experiments. To verify the effectiveness of the 
presented hybrid DVS localization methodology, three 
experiment scenarios are given. The first experiment is to 
compare the robot pose from encoders and the pose estimates 
from presented localization methodology, the second one is to 
verify if the presented hybrid DVS can still accurately localize 
the mobile platform at some corner positions that are far away 
from the cameras, and the last experiment is conducted to 
compare localizations results from two cameras. Cameras 
configurations on the testing arena are shown as Fig. 8. Two 
cameras are located at different pan/tilt angles and are 
calibrated separately to obtain intrinsic and extrinsic 
parameters for the Coordinates Transformation Process. Each 
camera is capable of localizing the mobile platform at the same 
time so that the robot can be simultaneously localized with two 
cameras.  

Fig. 8 Vision sensors configuration 

Fig. 9 shows the predetermined routing path for the first 
experiment. The numbers, 0, 1, 2, 3, and 4 indicate positions 
where rotational commands are given to the mobile platform. 
The routing sequence is: 0  1  2  0  3 4  0. The 
starting node 0 is around the origin (X = 98.00, Y= 140.00) on 
WRP. Fig. 9 shows the estimated path generated from robot 
encoders (Original) and our approach (Corrected). Results 
show that when the robot moves back to the origin on WRP, the 
routing path estimated from robot encoders indicate the robot 
pose is (X =650.00, Y = -500.00). The localization errors are 
845.17mm. The pose estimates from hybrid DVS is (X = 91.06, 
Y = 80.83) and resultant localization errors are 59.54mm.  

.

Fig. 9 Testing routing plan 1 

The comparisons of recorded paths directly from encoders 
(labeled as Original) and the presented approach (labeled as 
Corrected) are shown in Fig. 10. Arrows on the figure indicate 
large differences exist between these recorded paths. It is 
evident that hybrid DVS integrating vision sensors and 
encoders on the robot can significantly correct accumulated 
localization errors. 

0

1

4
2

2

3
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Fig. 10 Estimated path generated 

The second experiment is designed to move the mobile 
platform around a 5m x 5m testing arena as shown in Fig. 11. 
Five positions (labeled as 0~4) are selected to record the pose 
estimates from hybrid DVS. Four of them are around the arena 
corners and the rest one is in the middle. The routing sequence 
is: 0  1  2  3  4  2  0. Table I summarizes the 
comparisons of physical position measured directly on the 
arena and pose estimates from hybrid DVS. The largest 
localization error is 201.31mm estimated at position 4. All the 
other four errors are all within 100mm and the average 
localization error is 79.69mm. 

Fig. 11 Testing routing plan 2 

TABLE I
LOCALIZATION RESULTS: TESTING ROUTING PLAN 2

Physical  
Position

Estimated Results 
No. 

X Y 
Localization

Errors 

0 0.00 0.00 57 17 72.68

1 5000.00 0.00 4882.00 30.00 59.01

2 2500.00 2500.00 2448.00 2467.00 48.10

3 0.00 5000.00 79.00 4960.00 17.36

4 5000.00 5000.00 4852.00 4927.00 201.31

Avg. Localization Errors 79.69

The third experiment is to localize the robot with two 
cameras simultaneously at each time step. This scenario is to 
verify whether two cameras located at different locations can 
simultaneously localize the robot moving on the testing arena. 
The robot moves in S shape as shown in Fig. 12. Again, the 
robot moves from origin, make straight and circular motions 
and then go back to the starting point. Fig. 12 shows the 
localization results from the two overhead cameras. The 
maximum localization differences between cameras are around 
150mm at outer region of the arena.  This is reasonable because 
of possible distortions of images captured from general web 
cameras. This result can be very useful for deployments of 
multiple cameras to help localize mobile platform at even larger 
areas. The localization differences among cameras can 
potentially be reduced if cameras installed are pointed at similar 
target regions of the testing arena.  

To sum up, the proposed localization methodology that 
integrates odometry and vision sensor information can greatly 
reduce the localization errors. The errors can be controlled 
within 100mm for most regions of the testing arena. For 
simultaneous localizations from multiple cameras, localization 
results can be further improved once cameras are deployed at 
suitable locations. Moreover, a weighting-based inference 
mechanism can be further designed and incorporated into 
hybrid DVS to fuse pose estimates from different cameras. This 
is the next step to enhance the capability of hybrid DVS for 
mobile platform localization and navigation. 

Fig. 12 Localization results: Camera1 vs. Camera2 
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V. CONCLUSION

In this paper, a Hybrid Distributed Vision System for robot 
localization is presented. Robot localization replies not only on 
vision information from overhead cameras but control 
commands from mobile platform.The experiments showed that 
with integration of encoders, vision sensor information and 
flexible resampling policy, the system could dynamically adjust 
the number of particles and localize mobile platform with 
localization errors small than 100mm. The localization speed of 
the proposed system is around 15 fames per second with 300 
particles in average. Furthermore, the proposed system can be 
easily expanded to localize more than one robot. Future 
extensions of the paper are interactive dynamic path planning 
and intelligent inference mechanism for the integration of pose 
estimates from multiple cameras to increase the accuracy of 
pose estimates. 
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