Search results for: Dual Capacitor Model
7594 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router
Authors: Khine Phyu, Aung Myint Aye
Abstract:
This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20167593 An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine
Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi
Abstract:
In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.Keywords: Dual fuel HCCI engine, premixed ratio, equivalenceratio, CO and UHC emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19047592 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine
Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose
Abstract:
The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPGCNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 10^0 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.
Keywords: Diesel engine, Hydrogen, BTHE, BSEC, Soot, NOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44787591 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications
Authors: P. Krachodnok
Abstract:
In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.
Keywords: Multi-Slotted Antenna, Microstrip Patch Antenna, Frequency Selective Surface, Artificial Magnetic Conduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35887590 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller
Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu
Abstract:
In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.Keywords: FACTS, SSR, SSSC, damping torque, GA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17337589 Bipolar PWM and LCL Filter Configuration to Reduce Leakage Currents in Transformerless PV System Connected to Utility Grid
Authors: Shanmuka Naga Raju
Abstract:
This paper presents PV system without considering transformer connected to electric grid. This is considered more economic compared to present PV system. The problem that occurs when transformer is not considered appears with a leakage current near capacitor connected to ground. Bipolar Pulse Width Modulation (BPWM) technique along with filter L-C-L configuration in the circuit is modeled to shrink the leakage current in the circuit. The DC/AC inverter is modeled using H-bridge Insulated Gate Bipolar Transistor (IGBT) module which is controlled using proposed Bipolar PWM control technique. To extract maximum power, Maximum Power Point Technique (MPPT) controller is used in this model. Voltage and current regulators are used to determine the reference voltage for the inverter from active and reactive current where reactive current is set to zero. The PLL is modeled to synchronize the measurements. The model is designed with MATLAB Simulation blocks and compared with the methods available in literature survey to show its effectiveness.Keywords: Photovoltaic, PV, pulse width modulation, PWM, perturb and observe, phase locked loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10207588 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.
Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14037587 Dual Band Microstrip Patch Antenna for IEEE802.11b Application
Authors: Biplab Bag
Abstract:
In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for IEEE802.11b application is presented. The proposed antenna is designed by using substrate FR4_epoxy having permittivity of about 4.4 and tangent loss of 0.013. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna dual resonant frequency has been achieved in the band of 1.57GHz-1.68GHz (with BW 30 MHz) and 2.25 GHz -2.55GHz (with BW 40MHz). The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.
Keywords: Microstrip, Radiation Pattern, Return Loss, Tangent Loss, VSWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30467586 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.
Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56447585 An Innovative Transient Free Adaptive SVC in Stepless Mode of Control
Authors: U. Gudaru, D. R. Patil
Abstract:
Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.
Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, transient free
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23357584 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses
Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia
Abstract:
The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.Keywords: Behaviour factor, Dual system, OpenSEES, Overstrength, SeismoStruct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20647583 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10807582 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer
Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić
Abstract:
Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.Keywords: Dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15717581 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions
Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31507580 Design and Optimization of Coplanar Waveguide-Fed Sensing Antennas for ISM Band Applications
Authors: Vivek Bharti, Inderpreet Kaur, Saurabh Verma, Renu Gangwar, Hari Kumar Singh
Abstract:
This work presents a dual-band Coplanar Waveguide (CPW) fed rectangular patch antenna designed for applications in Industrial, Scientific, and Medical (ISM) Band sensing. Fabricated on a cost-effective FR-4 substrate with specific dimensions, the antenna incorporates a rectangular slot and a copper patch, optimized through simulation to achieve desired characteristics, particularly focusing on the reflection coefficient. A unique feature is introduced through the integration of copper cells forming a Partially Reflecting Surface (PRS) to feed the antenna. Dual-band functionality is achieved, covering frequencies of 1.28 GHz-1.3 GHz and 4.9 GHz-5.2 GHz, catering to diverse communication needs within these frequency ranges. The addition of a superstrate enhances the antenna’s gain, resulting in 4.5 dBi at 1.28 GHz-1.3 GHz and 6.5 dBi at 4.9 GHz-5.2 GHz, with an efficiency of 58%.
Keywords: ISM, Coplanar waveguide fed, superstrate, circularly polarized.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337579 Performance of Dual MRC Receiver for M-ary Modulations over Correlated Nakagami-m Fading Channels with Non-identical and Arbitrary Fading Parameter
Authors: Rupaban Subadar
Abstract:
Performance of a dual maximal ratio combining receiver has been analyzed for M-ary coherent and non-coherent modulations over correlated Nakagami-m fading channels with nonidentical and arbitrary fading parameter. The classical probability density function (PDF) based approach is used for analysis. Expressions for outage probability and average symbol error performance for M-ary coherent and non-coherent modulations have been obtained. The obtained results are verified against the special case published results and found to be matching. The effect of the unequal fading parameters, branch correlation and unequal input average SNR on the receiver performance has been studied.Keywords: MRC, correlated Nakagami-m fading, non-identicalfading statistics, average symbol error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14497578 Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane
Authors: R. Bansal, A. Jain, M. Kumar, R. S. Meena
Abstract:
Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.
Keywords: Defective Ground plane, Dual band, Loop Antenna, Microstrip antenna, Resonance frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37707577 Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load
Authors: Chih Chin Yang, Yen Chun Lin, Hsiao Hsuan Cheng
Abstract:
Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.Keywords: Capacitance, Logical level, Constant current source
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13897576 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings
Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić
Abstract:
Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.
Keywords: Dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8717575 Decision Making using Maximization of Negret
Authors: José M. Merigó, Montserrat Casanovas
Abstract:
We analyze the problem of decision making under ignorance with regrets. Recently, Yager has developed a new method for decision making where instead of using regrets he uses another type of transformation called negrets. Basically, the negret is considered as the dual of the regret. We study this problem in detail and we suggest the use of geometric aggregation operators in this method. For doing this, we develop a different method for constructing the negret matrix where all the values are positive. The main result obtained is that now the model is able to deal with negative numbers because of the transformation done in the negret matrix. We further extent these results to another model developed also by Yager about mixing valuations and negrets. Unfortunately, in this case we are not able to deal with negative numbers because the valuations can be either positive or negative.Keywords: Decision Making, Aggregation operators, Negret, OWA operator, OWG operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13097574 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)
Authors: Salem Alsanusi, Loubna Bentaher
Abstract:
Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22147573 An Experimental Study on the Effect of EGR and Engine Speed on CO and HC Emissions of Dual Fuel HCCI Engine
Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi
Abstract:
In this study, effects of EGR on CO and HC emissions of a dual fuel HCCI-DI engine are investigated. Tests were conducted on a single-cylinder variable compression ratio (VCR) diesel engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature was 110-115ºC due to better formation of a homogeneous mixture causing HCCI combustion. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge in HCCI combustion. Experiments indicated 35 BTDC as the optimum injection timing. Coolant temperature was maintained 50ºC during the tests. Results show that increasing engine speed at a constant EGR rate leads to increase in CO and UHC emissions due to the incomplete combustion caused by shorter combustion duration and less homogeneous mixture. Results also show that increasing EGR reduces the amount of oxygen and leads to incomplete combustion and therefore increases CO emission due to lower combustion temperature. HC emission also increases as a result of lower combustion temperatures.Keywords: Dual fuel HCCI engine, EGR, engine speed, CO andUHC emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23637572 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: Plug-in hybrid power system, fuel economy, performance, continuous variable transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12897571 Integer Programming Model for the Network Design Problem with Facility Dependent Shortest Path Routing
Authors: Taehan Lee
Abstract:
We consider a network design problem which has shortest routing restriction based on the values determined by the installed facilities on each arc. In conventional multicommodity network design problem, a commodity can be routed through any possible path when the capacity is available. But, we consider a problem in which the commodity between two nodes must be routed on a path which has shortest metric value and the link metric value is determined by the installed facilities on the link. By this routing restriction, the problem has a distinct characteristic. We present an integer programming formulation containing the primal-dual optimality conditions to the shortest path routing. We give some computational results for the model.Keywords: Integer programming, multicommodity network design, routing, shortest path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10557570 Evaluation of a Dual-Fluid Cold-Gas Thruster Concept
Authors: J. D. Burges, M. J. Hall, E. G. Lightsey
Abstract:
A new dual-fluid concept was studied that could eventually find application for cold-gas propulsion for small space satellites or other constant flow applications. In basic form, the concept uses two different refrigerant working fluids, each having a different saturation vapor pressure. The higher vapor pressure refrigerant remains in the saturation phase and is used to pressurize the lower saturation vapor pressure fluid (the propellant) which remains in the compressed liquid phase. A demonstration thruster concept based on this principle was designed and built to study its operating characteristics. An automotive-type electronic fuel injector was used to meter and deliver the propellant. Ejected propellant mass and momentum were measured for several combinations of refrigerants and hydrocarbon fluids. The thruster has the advantage of delivering relatively large total impulse at low tank pressure within a small volume.
Keywords: cold-gas, nano-satellite, R134a, thruster
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42667569 A High Standard Isolated Insolated Photovoltaic Egyptian Safari Rest Red Sea Area
Authors: Faten H. Fahmy
Abstract:
Where renewable energy sources, solar, hydro, wind are available the remote communities and businesses can be provided with the most reliable and affordable source of electrical energy. This paper presents a model of safari rest contains all the necessary services for the interested tourists who visit the safari Sinai desert. The PV energy system provides the rural energy needs of remote communities. A photovoltaic renewable energy system is designed to feed the global Ac and Dc electrical required load of this safari rest . The benefits of photovoltaic renewable energy at rural applications are its versatility and convenience. This model of safari rest must be taken in consideration by Egyptian Government as it will provide the tourism plane by new interested tourism field which put a big spot on Red sea area: El Ghordaka.
Keywords: Dual electrical supply, stand-alone PV system, location safari area, insolated isolated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14717568 Dual Band Fractal Antenna for Wireless Sensor Network Application
Authors: M. Shanmugapriya, M. A. Maluk Mohamed, J. William
Abstract:
A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.
Keywords: CPW, Fractal, Iterations, Miniaturization, Space filling, Self Similar, WSN, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24737567 Damping of Power System Oscillations by using coordinated tuning of POD and PSS with STATCOM
Authors: A. S. P.Kanojia, B. Dr.V.K.Chandrakar
Abstract:
Static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC), which can affect rapid control of reactive flow in the transmission line by controlling the generated a.c. voltage. The main aim of the paper is to design a power system installed with a Static synchronous compensator (STATCOM) and demonstrates the application of the linearised Phillips-heffron model in analyzing the damping effect of the STATCOM to improve power system oscillation stability. The proposed PI controller is designed to coordinate two control inputs: Voltage of the injection bus and capacitor voltage of the STATCOM, to improve the Dynamic stability of a SMIB system .The power oscillations damping (POD) control and power system stabilizer (PSS) and their coordinated action with proposed controllers are tested. The simulation result shows that the proposed damping controllers provide satisfactory performance in terms of improvements of dynamic stability of the system.
Keywords: Damping oscillations, FACTS, STATCOM, dynamic stability, PSS, POD, Coordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25317566 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22437565 Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection
Authors: Matteo Munaro, Stefano Michieletto, Edmond So, Daniele Alberton, Emanuele Menegatti
Abstract:
In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.
Keywords: 3D quality inspection, 2.5D reconstruction, laser triangulation, occlusions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510