WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10003114,
	  title     = {Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)},
	  author    = {Salem Alsanusi and  Loubna Bentaher},
	  country	= {},
	  institution	= {},
	  abstract     = {Response Surface Methods (RSM) provide
statistically validated predictive models that can then be manipulated
for finding optimal process configurations. Variation transmitted to
responses from poorly controlled process factors can be accounted
for by the mathematical technique of propagation of error (POE),
which facilitates ‘finding the flats’ on the surfaces generated by
RSM. The dual response approach to RSM captures the standard
deviation of the output as well as the average. It accounts for
unknown sources of variation. Dual response plus propagation of
error (POE) provides a more useful model of overall response
variation. In our case, we implemented this technique in predicting
compressive strength of concrete of 28 days in age. Since 28 days is
quite time consuming, while it is important to ensure the quality
control process. This paper investigates the potential of using design
of experiments (DOE-RSM) to predict the compressive strength of
concrete at 28th day. Data used for this study was carried out from
experiment schemes at university of Benghazi, civil engineering
department. A total of 114 sets of data were implemented. ACI mix
design method was utilized for the mix design. No admixtures were
used, only the main concrete mix constituents such as cement, coarseaggregate,
fine aggregate and water were utilized in all mixes.
Different mix proportions of the ingredients and different water
cement ratio were used. The proposed mathematical models are
capable of predicting the required concrete compressive strength of
concrete from early ages.},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {9},
	  number    = {12},
	  year      = {2015},
	  pages     = {1567 - 1571},
	  ee        = {https://publications.waset.org/pdf/10003114},
	  url   	= {https://publications.waset.org/vol/108},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 108, 2015},
	}