{"title":"Performance of Dual MRC Receiver for M-ary Modulations over Correlated Nakagami-m Fading Channels with Non-identical and Arbitrary Fading Parameter","authors":"Rupaban Subadar","volume":51,"journal":"International Journal of Electronics and Communication Engineering","pagesStart":292,"pagesEnd":296,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10593","abstract":"Performance of a dual maximal ratio combining\r\nreceiver has been analyzed for M-ary coherent and non-coherent\r\nmodulations over correlated Nakagami-m fading channels with nonidentical\r\nand arbitrary fading parameter. The classical probability\r\ndensity function (PDF) based approach is used for analysis.\r\nExpressions for outage probability and average symbol error\r\nperformance for M-ary coherent and non-coherent modulations have\r\nbeen obtained. The obtained results are verified against the special\r\ncase published results and found to be matching. The effect of the\r\nunequal fading parameters, branch correlation and unequal input\r\naverage SNR on the receiver performance has been studied.","references":"[1] M. Nakagami, \"The m-distribution-A general formula of intensity\r\ndistribution of rapid fading,\" Statistical Methods in Radio Wave\r\nPropagation, W. G. Hoffman, Ed. Oxford, England: Pergamon, 1960.\r\n[2] E. K. AI-Hussaini and A. M. Albassiouni, \"Performance of MRC\r\ndiversity systems for the detection of signals with Nakagami fading,\"\r\nIEEE Trans. Commun., vol. COM-33, pp. 1315-1319, Dec. 1985.\r\n[3] P. Lombardo, G. Fedele, and M. M. Rao, \"MRC performance for binary\r\nsignals in Nakagami fading with general branch correlation,\" IEEE\r\nTrans. Commun., vol. 47, pp. 44-52, Jan. 1999..\r\n[4] V. A. Aalo, \"Performance of maximal-ratio diversity systems in a\r\ncorrelated Nakagami-fading environment,\" IEEE Trans. on Commun.\r\nVo. 43. No. 8 , Aug. 1995.\r\n[5] Q. T. Zhang, \"Maximal-ratio combining over Nakagami fading channels\r\nwith an arbitrary branch covariance matrix,\" IEEE Trans. on Veh.\r\nTechnol. Vol. 48, No. 4, pp. 1141-1150, Jul. 1999..\r\n[6] G. C. Alexandropoulos, N. C. Sagias, F. I. Lazarakis and K. Berberidis,\r\n\"New results for the multivariate Nakagami-m fading model with\r\narbitrary correlation matrix and applications,\"IEEE Trans. on Wireless\r\nCommun., Vol. 8, No. 1, pp. 245-255, Jan. 2009.\r\n[7] M.-S. Alouini, A. Abdi and M. Kaveh, \"Sum of gamma variates and\r\nperformance of wireless communication systems over Nakagami-fading\r\nchannels\" IEEE Trans. on Veh. Technol. Vol. 50, No. 6, pp. 1471-1480,\r\nNov. 2001.\r\n[8] M. Z. Win and J. H. Winters, \"Exact error probability expressions for\r\nMRC in correlated Nakagami channels with unequal fading parameters\r\nand branch powers,\" in Proc. IEEE Global Commun. Conf.\r\n(GLOBECOM- 99), Rio de Janeiro, Brazil, pp. 2331-2335. Dec. 1999.\r\n[9] M. K. Simon and M.-S. Alouini, Digital Communication over Fading\r\nChannels, John Wiley & Sons, Inc., 2005.\r\n[10] J. Reig, L. Rubio, and N. Cardona, \"Bivariate Nakagami-m distribution\r\nwith arbitrary fading parameters,\" IEE Electron. Lett., vol. 38, no. 25,\r\npp. 1715-1717, Dec. 2002.\r\n[11] R. Subadar and P. R. Sahu , \"Capacity analysis of dual -SC and -MRC\r\nsystems over correlated Nakagami-m fading channels with nonidentical\r\nand arbitrary fading parameters,\" National Conference on\r\nCommunications (NCC), Chennai, Jan. 2010.\r\n[12] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical\r\nFunctions, 9th printing ed. New York: Dover, 1970.\r\n[13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and\r\nProducts, 6th Ed., San Diego, CA: Academic, 2000.\r\n[14] C. C. Tan and N. C. Beaulieu, \"Infnite Series Representations of the\r\nBivariate Rayleigh and Nakagami-m Distributions,\" IEEE Trans. on\r\nCommun., Vol. 45, No. 10, Oct. 1997.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 51, 2011"}