Search results for: Electrochemical Capacitor
211 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.
Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5647210 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527209 Optimal Capacitor Placement in Distribution Feeders
Authors: N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425208 Force on a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This phenomenon is most likely to be caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. A method to measure this force has been devised and used. A formula describing the force has also been derived. After comparing the data gained through experiments with those acquired using the theoretical formula, a difference was found above a certain value of current. This paper also gives reasons for this difference.Keywords: Capacitor with asymmetrical electrodes, Electricalfield, Mechanical force, Motion of ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976207 Effects of Capacitor Bank Defects on Harmonic Distortion and Park's Pattern Analysis in Induction Motors
Authors: G. Das, S. Das, P. Purkait, A. Dasgupta, M. Kumar
Abstract:
Properly sized capacitor banks are connected across induction motors for several reasons including power factor correction, reducing distortions, increasing capacity, etc. Total harmonic distortion (THD) and power factor (PF) are used in such cases to quantify the improvements obtained through connection of the external capacitor banks. On the other hand, one of the methods for assessing the motor internal condition is by the use of Park-s pattern analysis. In spite of taking adequate precautionary measures, the capacitor banks may sometimes malfunction. Such a minor fault in the capacitor bank is often not apparently discernible. This may however, give rise to substantial degradation of power factor correction performance and may also damage the supply profile. The case is more severe with the fact that the Park-s pattern gets distorted due to such external capacitor faults, and can give anomalous results about motor internal fault analyses. The aim of this paper is to present simulation and hardware laboratory test results to have an understanding of the anomalies in harmonic distortion and Park-s pattern analyses in induction motors due to capacitor bank defects.
Keywords: Capacitor bank, harmonic distortion, induction motor, Park's pattern, PSCAD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939206 Disinfection of Water by Adsorption with Electrochemical Regeneration
Authors: S. N. Hussain, H. M. A. Asghar, E. P. L. Roberts, N. W. Brown
Abstract:
Arvia®, a spin-out company of University of Manchester, UK is commercialising a water treatment technology for the removal of low concentrations of organics from water. This technology is based on the adsorption of organics onto graphite based adsorbents coupled with their electrochemical regeneration in a simple electrochemical cell. In this paper, the potential of the process to adsorb microorganisms and electrochemically disinfect them present in water has been demonstrated. Bench scale experiments have indicated that the process of adsorption using graphite adsorbents with electrochemical regeneration can be used for water disinfection effectively. The most likely mechanisms of disinfection of water through this process include direct electrochemical oxidation and electrochemical chlorination.Keywords: Arvia, Adsorption, Electrochemical Regeneration, Nyex
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161205 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA
Authors: Limouzade E., Joorabian M.
Abstract:
Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538204 Capacitive Air Bubble Detector Operated at Different Frequencies for Application in Hemodialysis
Authors: Mawahib Gafare Abdalrahman Ahmed, Abdallah Belal Adam, John Ojur Dennis
Abstract:
Air bubbles have been detected in human circulation of end-stage renal disease patients who are treated by hemodialysis. The consequence of air embolism, air bubbles, is under recognized and usually overlooked in daily practice. This paper shows results of a capacitor based detection method that capable of detecting the presence of air bubbles in the blood stream in different frequencies. The method is based on a parallel plates capacitor made of platinum with an area of 1.5 cm2 and a distance between the two plates is 1cm. The dielectric material used in this capacitor is Dextran70 solution which mimics blood rheology. Simulations were carried out using RC circuit at two frequencies 30Hz and 3 kHz and results compared with experiments and theory. It is observed that by injecting air bubbles of different diameters into the device, there were significant changes in the capacitance of the capacitor. Furthermore, it is observed that the output voltage from the circuit increased with increasing air bubble diameter. These results demonstrate the feasibility of this approach in improving air bubble detection in Hemodialysis.Keywords: Air bubbles, Hemodialysis, Capacitor, Dextran70, Air bubbles diameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248203 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor
Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee
Abstract:
A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.
Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885202 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)
Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat
Abstract:
This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808201 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281200 Optimal Capacitor Placement in a Radial Distribution System using Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao, S. V. L. Narasimham
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9, 34, and 85-bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.
Keywords: Distribution systems, Capacitor placement, loss reduction, Loss sensitivity factors, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5282199 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm
Authors: R. Srinivasa Rao
Abstract:
Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170198 Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks
Authors: Pyone Lai Swe, Wanna Swe, Kyaw Myo Lin
Abstract:
Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.
Keywords: Load flow, Voltage stability, Tap changingtransformer, Shunt capacitor injection, Voltage stability limit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5977197 Formation of Byproducts during Regeneration of Various Graphitic Adsorbents in a Batch Electrochemical Reactor
Authors: S. N. Hussain, H. M. A. Asghar, H. Sattar, N. W. Brown, E. P. L. Roberts
Abstract:
A water treatment technology employing the adsorption of dissolved organic contaminants from water and their electrochemical regeneration has been commercialized by Arvia Technology Ltd, UK. This technology focuses the adsorption of pollutants onto the surface of low surface area graphite based adsorbents followed by the anodic oxidation of adsorbed species in an electrochemical cell. However, some of the adsorbed species may lead to the formation of intermediate breakdown products due to incomplete oxidation. The information regarding the formation of breakdown products during electrochemical regeneration of these adsorbents is important for the effective application of this process to water treatment. In the present paper, the formation of the break down products during electrochemical regeneration of various graphite based adsorbents has been demonstrated.
Keywords: Arvia®, Adsorption, Electrochemical Regeneration, Breakdown products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810196 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter
Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou
Abstract:
Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.Keywords: Flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731195 A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning
Authors: A. R. Seifi
Abstract:
This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.
Keywords: Capacitor planning, Fuzzy logic method, Genetic Algorithm, Dynamic programming, Radial Distribution feeder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612194 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs
Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary
Abstract:
This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.
Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134193 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh
Abstract:
Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.
Keywords: Electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110192 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength
Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari
Abstract:
Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settingsKeywords: Electrochemical condition, ionic strength, viscosity, xanthan gum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661191 High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC
Authors: Wee Leong Son, Hasmayadi Abdul Majid, Rohana Musa
Abstract:
This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Low voltage ADC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9563190 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm
Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako
Abstract:
There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.
Keywords: Capacitor banks, IEEE bus 14-network, Pre-insertion resistor, Standalone wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294189 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.
Keywords: Bio-electrochemical, nanowires, wastewater, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273188 Capacitor Placement in Radial Distribution System for Loss Reduction Using Artificial Bee Colony Algorithm
Authors: R. Srinivasa Rao
Abstract:
This paper presents a new method which applies an artificial bee colony algorithm (ABC) for capacitor placement in distribution systems with an objective of improving the voltage profile and reduction of power loss. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 69-bus system and compared the results with the other approach available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.Keywords: Distribution system, Capacitor Placement, Loss reduction, Artificial Bee Colony Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817187 Investigation of Titanium Oxide Layer in Thermal-Electrochemical Anodizing of Ti6Al4V Alloy
Authors: Z. Abdolldhi, A. A. Ziaee M., A. Afshar
Abstract:
In this paper the combination of thermal oxidation and electrochemical anodizing processes is used to produce titanium oxide layers. The response of titanium alloy Ti6Al4V to oxidation processes at various temperatures and electrochemical anodizing in various voltages are investigated. Scanning electron microscopy (SEM); X-Ray Diffraction (XRD) and porosity determination have been used to characterize the oxide layer thickness, surface morphology, oxide layer-substrate adhesion and porosity. In the first experiment, samples modified by thermal oxidation process then followed by electrochemical anodizing. Second experiment consists of surfaces modified by electrochemical anodizing process and then followed by thermal oxidation. The first method shows better properties than other one. In second experiment, Surfaces modified were achieved by thicker and more adherent thick oxide layers on titanium surface. The existence of an electrochemical anodized oxide layer did not improve the adhesion of thermal oxide layer. The high temperature, thermal formation of an oxide layer leads to a coarse oxide grain morphology and a complete oxidative particle. In addition, in high temperature oxidation porosity content is increased. The oxide layer of thermal oxidation and electrochemical anodizing processes; on Ti–6Al–4V substrate was covered with different colored oxide layers.Keywords: Electrochemically anodizing, Porosity, Thermaloxidation, Ti6Al4 alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380186 Optimal Compensation of Reactive Power in the Restructured Distribution Network
Authors: Atefeh Pourshafie, Mohsen. Saniei, S. S. Mortazavi, A. Saeedian
Abstract:
In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.Keywords: capacitor placement, deregulated electric market, distribution network optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124185 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy
Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi
Abstract:
Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.
Keywords: Electrochemical impedance spectroscopy, intergranular corrosion, sensitization, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873184 Implemented 5-bit 125-MS/s Successive Approximation Register ADC on FPGA
Authors: S. Heydarzadeh, A. Kadivarian, P. Torkzadeh
Abstract:
Implemented 5-bit 125-MS/s successive approximation register (SAR) analog to digital converter (ADC) on FPGA is presented in this paper.The design and modeling of a high performance SAR analog to digital converter are based on monotonic capacitor switching procedure algorithm .Spartan 3 FPGA is chosen for implementing SAR analog to digital converter algorithm. SAR VHDL program writes in Xilinx and modelsim uses for showing results.Keywords: Analog to digital converter, Successive approximation, Capacitor switching algorithm, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4371183 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor
Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi
Abstract:
Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).Keywords: Adsorption, electrochemical oxidation, metals, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797182 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration
Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar
Abstract:
A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221