WASET
	%0 Journal Article
	%A M. Ghazikhani and  M. R. Kalateh and  Y. K. Toroghi and  M. Dehnavi
	%D 2009
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 28, 2009
	%T An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine
	%U https://publications.waset.org/pdf/3534
	%V 28
	%X In this study, effects of premixed and equivalence
ratios on CO and HC emissions of a dual fuel HCCI engine are
investigated. Tests were conducted on a single-cylinder engine with
compression ratio of 17.5. Premixed gasoline is provided by a
carburetor connected to intake manifold and equipped with a screw
to adjust premixed air-fuel ratio, and diesel fuel is injected directly
into the cylinder through an injector at pressure of 250 bars. A heater
placed at inlet manifold is used to control the intake charge
temperature. Optimal intake charge temperature results in better
HCCI combustion due to formation of a homogeneous mixture,
therefore, all tests were carried out over the optimum intake
temperature of 110-115 ºC. Timing of diesel fuel injection has a great
effect on stratification of in-cylinder charge and plays an important
role in HCCI combustion phasing. Experiments indicated 35 BTDC
as the optimum injection timing. Varying the coolant temperature in
a range of 40 to 70 ºC, better HCCI combustion was achieved at 50
ºC. Therefore, coolant temperature was maintained 50 ºC during all
tests. Simultaneous investigation of effective parameters on HCCI
combustion was conducted to determine optimum parameters
resulting in fast transition to HCCI combustion. One of the
advantages of the method studied in this study is feasibility of easy
and fast transition of typical diesel engine to a dual fuel HCCI
engine. Results show that increasing premixed ratio, while keeping
EGR rate constant, increases unburned hydrocarbon (UHC)
emissions due to quenching phenomena and trapping of premixed
fuel in crevices, but CO emission decreases due to increase in CO to
CO2 reactions.
	%P 350 - 356