
 

 

1 
Abstract—Interaction between mixing and crystallization is often 

ignored despite the fact that it affects almost every aspect of the 
operation including nucleation, growth, and maintenance of the 
crystal slurry. This is especially pronounced in multiple impeller 
systems where flow complexity is increased. By choosing proper 
mixing parameters, what closely depends on the knowledge of the 
hydrodynamics in a mixing vessel, the process of batch cooling 
crystallization may considerably be improved. The values that render 
useful information when making this choice are mixing time and 
power consumption. The predominant motivation for this work was 
to investigate the extent to which radial dual impeller configuration 
influences mixing time, power consumption and consequently the 
values of metastable zone width and nucleation rate. In this research, 
crystallization of borax was conducted in a 15 dm3 baffled batch 
cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was 
performed using two straight blade turbines (4-SBT) mounted on the 
same shaft that generated radial fluid flow. Experiments were 
conducted at different values of N/NJS ratio (impeller speed/ 
minimum impeller speed for complete suspension), D/T ratio 
(impeller diameter/crystallizer diameter), c/D ratio (lower impeller 
off-bottom clearance/impeller diameter), and s/D ratio (spacing 
between impellers/impeller diameter). Mother liquor was saturated at 
30°C and was cooled at the rate of 6°C/h. Its concentration was 
monitored in line by Na-ion selective electrode. From the values of 
supersaturation that was monitored continuously over process time, it 
was possible to determine the metastable zone width and 
subsequently the nucleation rate using the Mersmann’s nucleation 
criterion. For all applied dual impeller configurations, the mixing 
time was determined by potentiometric method using a pulse 
technique, while the power consumption was determined using a 
torque meter produced by Himmelstein & Co. Results obtained in 
this investigation show that dual impeller configuration significantly 
influences the values of mixing time, power consumption as well as 
the metastable zone width and nucleation rate. A special attention 
should be addressed to the impeller spacing considering the flow 
interaction that could be more or less pronounced depending on the 
spacing value.  

 
Keywords—Dual impeller crystallizer, mixing time, power 

consumption, metastable zone width, nucleation rate. 

I. INTRODUCTION 

RYSTALLIZATION is a valuable separation and 
purification technique in many domains, such as 
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chemical, pharmaceutical and food industries. If 
crystallization is conducted in a stirred vessel, mixing can 
affect crystallization kinetics and consequently the properties 
of the product, including crystal size distribution, purity and 
morphology. Although it has been empirically known that 
impeller and crystallizer geometry have a considerable effect 
on the product, this problem has rarely been quantitatively 
investigated [1]–[3] and in many cases crystallization is 
carried out without any optimization of the hydrodynamic 
conditions [4], [5].  

In a mixing vessel (which crystallizer in this research is), 
the flow pattern generated by impellers is a strong function of 
mixing characteristics such as type of the impeller, geometry 
of the impeller, presence or absence of the baffles, geometry 
of the reactor and rheological properties of the fluid [6]. In 
order to obtain a desired product, each crystallizer, regardless 
of its size, requires a proper selection of the mixing 
characteristics. 

To what degree a certain system is mixed, can be assessed 
by several parameters, with mixing time as the most important 
one [7]. It is defined as the time necessary to achieve a given 
homogeneity from the non-equilibrium level after a small 
volume of tracer has been injected into the mixing vessel [8]. 
Over the past decades, numerous studies on this subject have 
been published [9]–[15]. The majority of which has been 
conducted in a single impeller system, which is adequate for 
small scale processes. However, for plant scale, a multiple 
impeller system with an aspect ratio higher than one is a more 
desirable option. In these systems, mixing time has rarely been 
investigated and is still an open issue.  

The aim of this work was to investigate how dual radial 
impeller configuration influences mixing time and power 
consumption in a batch cooling crystallizer. The effect of the 
same configurations on the nucleation rate of borax 
decahydrate (in a batch cooling crystallizer was tested as well.  

Boron compounds, including borax decahydrate, have a 
wide range of applications almost in all manufacturing areas, 
except food [16]. The production of borax crystals of a certain 
composition and crystal size distribution is dependent on 
crystallization kinetics which in turn is dependent on fluid 
dynamics of the suspension.  

This study gives a contribution to establishing an efficient 
dual impeller configuration for the process of batch cooling 
crystallization of borax.  
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