Search results for: Functional properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3403

Search results for: Functional properties

2413 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov

Abstract:

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
2412 New Product Development Process on High-Tech Innovation Life Cycle

Authors: Gonçalo G. Aleixo, Alexandra B. Tenera

Abstract:

This work will provide a new perspective of exploring innovation thematic. It will reveal that radical and incremental innovations are complementary during the innovation life cycle and accomplished through distinct ways of developing new products. Each new product development process will be constructed according to the nature of each innovation and the state of the product development. This paper proposes the inclusion of the organizational function areas that influence new product's development on the new product development process.

Keywords: Cross-functional, Incremental Innovation, New Product development Process, Radical Innovation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3814
2411 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Z. Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper, first of all, investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. Volume proportions of 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total rate of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower water absorption capacities compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: Diatomite, fibre, strength, supplementary cementing materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
2410 Green-Reduction of Covalently Functionalized Graphene Oxide with Varying Stoichiometry

Authors: A. Pruna, D. Pullini, D. Busquets

Abstract:

Graphene-based materials were prepared by chemical reduction of covalently functionalized graphene oxide with environmentally friendly agents. Two varying stoichiometry of graphene oxide (GO) induced by using different chemical preparation conditions, further covalent functionalization of the GO materials with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide and ascorbic acid and sodium bisulfite as reducing agents were exploited in order to obtain controllable properties of the final solution-based graphene materials. The obtained materials were characterized by thermo-gravimetric analysis, Fourier transform infrared and Raman spectroscopy and X-ray diffraction. The results showed successful functionalization of the GO materials, while a comparison of the deoxygenation efficiency of the two-type functionalized graphene oxide suspensions by the different reducing agents has been made, revealing the strong dependence of their properties on the GO structure and reducing agents.

Keywords: Graphene oxide, covalent functionalization, reduction, ascorbic acid, sodium bisulfate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3617
2409 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana

Abstract:

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
2408 Comparison of Physico-Chemical Properties And Fatty Acid Compostion of Elateriospermum Tapos (Buah Perah), Palm Oil And Soybean Oil

Authors: Siti Hamidah, Lee Nian Yian, Azizi Mohd

Abstract:

Elateriospermum tapos seed (buah perah) is the one of the rich sources of polyunsaturated fatty acids. It contains high percentage of oleic acid which is the important component to develop nervous system and also α-linolenic acid (ALA) which is the precursor of omega-3 fatty acids series to synthesize eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, there is less study about this valuable oilseed and exploit its potential. Therefore, this paper is to assess the comparison of physico-chemical properties and fatty composition of perah oil to palm oil and soybean oil. From the comparison, perah oil shows low peroxide value means it has good oxidative stability and also high iodine values shows that it can be used in paint industry. The study shown that perah oil is comparable to palm oil and soybean oil, so it has high potential to be exploited in the oleochemical, pharmaceutical, cosmetics and paint industries.

Keywords: α-linolenic acid, palm oil, perah oil, soybean oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
2407 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales

Authors: Meng Hu, Lili Wang

Abstract:

By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.

Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
2406 Biodegradable Surfactants for Advanced Drug Delivery Strategies

Authors: C. Hönnscheidt, R. Krull

Abstract:

Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.

Keywords: Biopolymers, γ-Polyglutamic acid, Oxidative stress, Ubiquinone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
2405 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
2404 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
2403 Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria

Authors: Travis J. Meyer, Jasodra Ramlall, Phyo Thu, Nidhi Gadura

Abstract:

For centuries humans have used the antimicrobial properties of copper to their advantage. Yet, after all these years the underlying mechanisms of copper mediated cell death in various microbes remain unclear. We had explored the hypothesis that copper mediated increased levels of lipid peroxidation in the membrane fatty acids is responsible for increased killing in Escherichia coli. In this study we show that in both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) bacteria there is a strong correlation between copper mediated cell death and increased levels of lipid peroxidation. Interestingly, the non-spore forming gram positive bacteria as well as gram negative bacteria show similar patterns of cell death, increased levels of lipid peroxidation, as well as genomic DNA degradation, however there is some difference in loss in membrane integrity upon exposure to copper alloy surface.

Keywords: Antimicrobial, copper, gram positive, gram negative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5548
2402 Simulation of Acoustic Properties of Borate and Tellurite Glasses

Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi

Abstract:

Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.

Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2401 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
2400 Understanding the Behavior of Superconductors by Analyzing Permittivity

Authors: Fred Lacy

Abstract:

A superconductor has the ability to conduct electricity perfectly and exclude magnetic fields from its interior. In order to understand electromagnetic characteristics of superconductors, their material properties need to be examined. To facilitate this understanding, a theoretical model based on concepts of electromagnetics is presented to explain the electrical and magnetic properties of superconductors. The permittivity response is the key aspect of the model and it describes the electrical resistance response and why it vanishes at the material’s critical temperature. The model also explains the behavior of magnetic fields and why they cannot exist inside superconducting materials. The theoretical concepts and equations associated with this model are used to demonstrate that they are sufficient in describing the behavior of both type I and type II (or high temperature) superconductors. This model is also able to explain why superconductors behave differently than perfect conductors. As a result, examining the permittivity response and understanding electromagnetic field theory provides insight into the major aspects associated with superconducting materials.

Keywords: Ampere’s law, permittivity, permeability, resistivity, Schrödinger wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
2399 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: Aluminum alloy, fatigue performance, fracture, friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
2398 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Authors: M. Ghobeiti-Hasab

Abstract:

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and solgel auto-combustion methods were 1300°C and 1000°C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Srferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Keywords: Sr-ferrite, Sol-gel, Magnetic properties, Calcination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
2397 Chemical Destabilization on Water in Crude Oil Emulsions

Authors: Abdurahman H. N., M. Nuraini

Abstract:

Experimental data are presented to show the influence of different types of chemical demulsifier on the stability and demulsification of emulsions. Three groups of demulsifier with different functional groups were used in this work namely amines, alcohol and polyhydric alcohol. The results obtained in this study have exposed the capability of chemical breaking agents in destabilization of water in crude oil emulsions. From the present study, found that molecular weight of the demulsifier were influent the capability of the emulsion to separate.

Keywords: Demulsification, emulsions, stability, breakingagent, destabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6030
2396 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance

Authors: Benmalek M. Larbi, R. Harbi, S. Boukor

Abstract:

This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.

Keywords: Clay brick waste, mortar, properties, quarry sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
2395 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
2394 Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Keywords: Laser Beam Welding, dissimilar metals, SS/Al, Cu/Al and Ti/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
2393 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
2392 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil

Authors: Derya Ören Duran, Şeyma Akalin Benderli

Abstract:

Cold press technique is a traditional method to obtain oil. The cold-pressing procedure involves neither heat nor chemical treatments; therefore, cold press technique has low oil yield. The cold pressed herbal material residue still contains some oil after cold press. In this study, the oil that is remained in the cold pressed aniseed was extracted with hexane; and it was analyzed to determine physicochemical properties and quality parameters. It was found that the aniseed after cold press process still contained 10% oil. The values of other analysis parameters were 2.1 mgKOH/g for free fatty acid (FFA) and 7.6 meq02/kg for peroxide. Cold pressed aniseed oil values were determined as 2.1 mgKOH/g for FFA and 4.5 meq02/kg for peroxide, respectively. In addition, fatty acid composition was analyzed, and it was found that both types of oil had same fatty acid compositions. The main fatty acids were oleic, linoleic and palmitic acids.

Keywords: Aniseed oil, cold press, extraction, residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
2391 Effect of Soil Tillage System upon the Soil Properties, Weed Control, Quality and Quantity Yield in Some Arable Crops

Authors: T Rusu, P I Moraru, I Bogdan, A I Pop, M L Sopterean

Abstract:

The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control and yield in the case of maize (Zea mays L.), soya-bean (Glycine hispida L.) and winter wheat (Triticum aestivum L.) in a three years crop rotation. A research has been conducted at the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania. The use of minimum soil tillage systems within a three years rotation: maize, soya-bean, wheat favorites the rise of the aggregates hydro stability with 5.6-7.5% on a 0-20 cm depth and 5-11% on 20-30 cm depth. The minimum soil tillage systems – paraplow, chisel or rotary grape – are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The soil tillage system influences the productivity elements of cultivated species and finally the productions thus obtained. Thus, related to conventional working system, the productions registered in minimum tillage working represented 89- 97% in maize, 103-112% in soya-bean, 93-99% in winter-wheat. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control. Under minimum tillage systems in the case of winter weat as an option for replacing classic ploughing, the best results in terms of quality indices were obtained from version worked with paraplow, followed by rotary harrow and chisel. At variants worked with paraplow were obtained quality indices close to those of the variant worked with plow, and protein and gluten content was even higher. At Ariesan variety, highest protein content, 12.50% and gluten, 28.6% was obtained for the variant paraplow.

Keywords: Minimum tillage, soil properties, yields quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
2390 Signature Recognition Using Conjugate Gradient Neural Networks

Authors: Jamal Fathi Abu Hasna

Abstract:

There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.

Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
2389 Synthesis and Foam Power of New Biodegradable Surfactant

Authors: R. Mousli, A. Tazerouti

Abstract:

This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.

Keywords: Non ionic surfactants, GC-MS, surface properties, CMC, foam power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2388 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube

Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan

Abstract:

We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.

Keywords: Newtonian, NUR factor, Brownian motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
2387 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

Authors: Cha-Hwa Lin, Je-Wei Hu

Abstract:

The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).

Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
2386 Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600

Authors: Chansopheak Seang, Afia David Kouadri, Eric Ragneau

Abstract:

Three dimensional analysis of thermal model in laser full penetration welding, Nd:YAG, by transparent mode DP600 alloy steel 1.25mm of thickness and gap of 0.1mm. Three models studied the influence of thermal dependent temperature properties, thermal independent temperature and the effect of peak value of specific heat at phase transformation temperature, AC1, on the transient temperature. Another seven models studied the influence of discretization, meshes on the temperature distribution in weld plate. It is shown that for the effects of thermal properties, the errors less 4% of maximum temperature in FZ and HAZ have identified. The minimum value of discretization are at least one third increment per radius for temporal discretization and the spatial discretization requires two elements per radius and four elements through thickness of the assembled plate, which therefore represent the minimum requirements of modeling for the laser welding in order to get minimum errors less than 5% compared to the fine mesh.

Keywords: FEA, welding, discretization, ABAQUS user subroutine DFLUX

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2385 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites through T6 and T8 Heat Treatments

Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.

Abstract:

In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of benefits such as moderate strength; better deforming characteristics and affordable cost. It is expected that substitution of aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminum alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. In addition to Zn, Mg as major alloying additions, Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties by suitable heat treatment process. Subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments; known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. The hardness value may further improve when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. It is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and up to 5 times increase in wear resistance are also observed in the present study.

Keywords: Reinforcement, precipitation, thermomechanical, dislocation, strain hardening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
2384 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552