Biodegradable Surfactants for Advanced Drug Delivery Strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Biodegradable Surfactants for Advanced Drug Delivery Strategies

Authors: C. Hönnscheidt, R. Krull

Abstract:

Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.

Keywords: Biopolymers, γ-Polyglutamic acid, Oxidative stress, Ubiquinone.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087139

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238

References:


[1] F. Hellmers, P. Ferguson, J. Koropatnick, R. Krull, and A. Margaritis, “Characterization and in vitro cytotoxicity of doxorubicin-loaded γ- polyglutamic acid-chitosan composite nanoparticles,” Biochem. Eng. J., vol.75, pp.72–78, Jun. 2013.
[2] A. Sandler, R. Gray, M. C. Perry, J. Brahmer, J. H. Schiller, A. Dowlati, R. Lilenbaum, and D. H. Johnson, “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” N. Engl. J. Med., vol.355, no. 24, pp.2542–2550, Dec. 2006.
[3] B. Manocha and A. Margaritis, “Controlled Release of Doxorubicin from Doxorubicin/γ-Polyglutamic Acid Ionic Complex,” J. Nanomat., vol.2010, p.9, 2010.
[4] D. J. Slamon, “Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2,” N. Engl. J. Med., vol.344, no. 11, pp.783–792, 2001.
[5] R. S. Herbst, G. Giaccone, J. H. Schiller, R. B. Natale, V. Miller, C. Manegold, G. Scagliotti, R. Rosell, I. Oliff, J. a Reeves, M. K. Wolf, A. D. Krebs, S. D. Averbuch, J. S. Ochs, J. Grous, A. Fandi, and D. H. Johnson, “Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-Intact 2,” J. Clin. Oncol., vol.22, no. 5, pp.785–794, Mar. 2004.
[6] L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A. Tempestini, L. Formigli, S. Zecchi-Orlandini, G. Orlandini, G. Carella, R. Brancato, and S. Capaccioli, “Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property,” J. Biol. Chem., vol.278, no. 30, pp.28220–28228, Jul. 2003.
[7] K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annu. Rev. Plant Biol., vol.55, pp.373– 399, Jan. 2004.
[8] R. K. Chaturvedi and M. F. Beal, “Mitochondrial approaches for neuroprotection,” Ann. N. Y. Acad. Sci., vol.1147, pp.395–412, Dec. 2008.
[9] F. L. Crane, “Biochemical functions of coenzyme Q10,” J. Am. Coll. Nutr., vol.20, no. 6, pp.591–598, 2001.
[10] J. Pardeike, S. Weber, N. Matsko, and A. Zimmer, “Formation of a physical stable delivery system by simply autoclaving nanostructured lipid carriers (NLC),” Int. J. Pharm., vol.439, no. 1–2, pp.22–27, Dec. 2012.
[11] H. Bunjes, “Lipid nanoparticles for the delivery of poorly water-soluble drugs,” J. Pharm. Pharmacol., vol.62, no. 11, pp.1637–1645, Nov. 2010.
[12] A. J. Almeida and E. Souto, “Solid lipid nanoparticles as a drug delivery system for peptides and proteins,” Adv. Drug Deliv. Rev., vol.59, no. 6, pp.478–490, Jul. 2007.
[13] W. Mehnert and K. Mäder, “Solid lipid nanoparticles,” Adv. Drug Deliv. Rev., vol.64, pp.83–101, Dec. 2012.
[14] W. Mehnert and K. Mäder, “Solid lipid nanoparticles: production, characterization and applications.,” Adv. Drug Deliv. Rev., vol.47, no. 2– 3, pp.165–196, Apr. 2001.
[15] K. Shakesheff, C. Evora, I. Soriano, and R. Langer, “The Adsorption of Poly(vinyl alcohol) to Biodegradable Microparticles Studied by X-Ray Photoelectron Spectroscopy (XPS),” J. Colloid Interface Sci., vol.185, no. 2, pp.538–547, Jan. 1997.
[16] J. Kreuter, “Nanoparticulate systems for brain delivery of drugs,” Adv. Drug Deliv. Rev., vol.47, no. 1, pp.65–81, Mar. 2001.
[17] I. F. Uchegbu and S. P. Vyas, “Non-ionic surfactant based vesicles (niosomes) in drug delivery,” Int. J. Pharm., vol.172, no. 1–2, pp.33–70, Oct. 1998.
[18] V. P. Torchilin, “Structure and design of polymeric surfactant-based drug delivery systems,” J. Control. Release, vol.73, no. 2–3, pp.137– 172, Jun. 2001.
[19] R. G. Strickley, “Solubilizing excipients in oral and injectable formulations,” Pharm. Res., vol.21, no. 2, pp.201–230, Feb. 2004.
[20] R. Gref, A. Dombb, P. Quelled, T. Blunk, R. H. Miillerd, J. M. Verbavatz, and R. Langerf, “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres,” Adv. Drug Deliv. Rev., vol.16, pp.215–233, 1995.
[21] H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, “Toxicity of cationic lipids and cationic polymers in gene delivery,” J. Control. Release, vol.114, no. 1, pp.100–109, Aug. 2006.
[22] M. Huang, E. Khor, and L.-Y. Lim, “Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation,” Pharm. Res., vol.21, no. 2, pp.344–353, Feb. 2004.
[23] Alakhov VYu, Moskaleva EYu, E. V Batrakova, and a V Kabanov, “Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer,” Bioconjugate Chem., vol.7, no. 2, pp.209–216, 1996.
[24] B. Manocha and A. Margaritis, “A novel Method for the selective recovery and purification of γ-polyglutamic acid from Bacillus licheniformis fermentation broth,” Biotechnol. Prog., vol.26, no. 3, pp.734–742, 2010.
[25] A. Richard and A. Margaritis, “Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis,” Biotechnol. Bioeng., vol.82, no. 3, pp.299–305, May 2003.
[26] J. M. Buescher and A. Margaritis, “Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries,” Crit. Rev. Biotech., vol.27, no. 1, pp.1– 19, 2007.
[27] I. Bajaj and R. Singhal, “Poly (glutamic acid) - An emerging biopolymer of commercial interest,” Bioresource Technol., vol.102, no. 10, pp.5551–5561, May 2011.
[28] A. Richard and A. Margaritis, “Poly(glutamic acid) for biomedical applications,” Crit. Rev. Biotech., vol.21, no. 4, pp.219–232, Jan. 2001.
[29] D. Hudson and A. Margaritis, “Biopolymer nanoparticle production for controlled release of biopharmaceuticals,” Crit. Rev. Biotech., pp.1–19, Jan. 2012.
[30] M. Kambourova, M. Tangney, and G. Fergus, “Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis,” Appl. Environ. Microbiol., vol.67, pp.1004–1007, 2001.
[31] G. A. Kunioka M, “Biosynthesis of poly(γ-glutamic acid) from Lglutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335,” Appl. Microbiol. Biotechnol., vol.6, pp.867–872, 1994.
[32] T. Akagi, M. Higashi, T. Kaneko, T. Kida, and M. Akashi, “Hydrolytic and Enzymatic Degradation of Nanoparticles Based on Amphiphilic Poly(gamma-glutamic acid)-graft-L-Phenylalanine Copolymers,” Biomacromolecules, vol.7, no. 1, pp.297–303, Jan. 2006.
[33] T. Akagi, T. Kaneko, T. Kida, and M. Akashi, “Preparation and characterization of biodegradable nanoparticles based on poly(gammaglutamic acid) with l-phenylalanine as a protein carrier,” J. Control. Release, vol.108, no. 2–3, pp.226–236, Nov. 2005.
[34] F. Branda, B. Silvestri, G. Luciani, A. Costantini, and F. Tescione, “Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles,” Coll. Surf. A, vol.367, no. 1–3, pp.12–16, Sep. 2010.
[35] L. H. Reddy and R. S. R. Murthy, “Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation.,” AAPS PharmSciTech, vol.6, no. 2, pp.E158–E166, Jan. 2005.
[36] B. Zhao and Z. Nan, “Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route,” Nanoscale Res. Lett., vol.6, no. 1, pp.230–238, Jan. 2011.
[37] S. Hohmann, Yeast stress responses. 2003, p.387.
[38] N. A. Elliott and M. R. Volkert, “Stress Induction and Mitochondrial Localization of Oxr1 Proteins in Yeast and Humans,” Mol. Cell. Biol., vol.24, no. 8, pp.3180–3187, 2004.
[39] W. Dröge, “Free radicals in the physiological control of cell function,” Physiol. Rev., vol.82, no. 1, pp.47–95, Jan. 2002.
[40] A. Höhn, J. König, and T. Grune, “Protein oxidation in aging and the removal of oxidized proteins,” J. Proteomics, Jan. 2013.
[41] D. J. Jamieson, “Oxidative stress responses of the yeast Saccharomyces cerevisiae,” Yeast, vol.14, no. 16, pp.1511–1527, Dec. 1998.
[42] L. L. Ji, “Antioxidants and oxidative stress in exercise,” Proc. Soc. Exp. Biol. Med., vol.222, no. 44453, pp.283–292, 1999.
[43] V. Mugoni, R. Postel, V. Catanzaro, E. De Luca, E. Turco, G. Digilio, L. Silengo, M. P. Murphy, C. Medana, D. Y. R. Stainier, J. Bakkers, and M. M. Santoro, “Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis,” Cell, vol.152, no. 3, pp.504–518, Jan. 2013.
[44] A. Navarro and A. Boveris, “The mitochondrial energy transduction system and the aging process,” Am. J. Physiol. Cell Physiol., vol.292, no. 2, pp.C670–C686, Feb. 2007.
[45] J. Gruber, S. Fong, C.-B. Chen, S. Yoong, G. Pastorin, S. Schaffer, I. Cheah, and B. Halliwell, “Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing.,” Biotechnol. Adv., Sep. 2012.