Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications
Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik
Abstract:
The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.
Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132657
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399References:
[1] S. Hideki, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun. 1977, 578.
[2] A. J. Heeger, Angew. Chem. Int. Ed Engl. 2001, 40, 2591.
[3] W. H. Kim, A. J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim and Z. H. Kafafi, Appl. Phys. Lett. 2002, 80, 3844.
[4] G. F. Wang, X. M. Tao, R. X. Wang. G. F. Wang, X. M. Tao, and R. X. Wang, Composites Science and Technology. 2008, 68, 14, 2837.
[5] D. T. Jr. Hallinan, S. A. Mullin, G. M. Stone and N. P. Balsara, J. Electrochem. Soc., 2013, 160, 3, A464.
[6] G. Ma, Z. Wen, Q. Wang, C. Shen, J. Jin and X. Wu, J. Mater. Chem. A, 2014, 2, 19355.
[7] K. S. Ryu, Y.-G. Lee, Y.-S. Hong, Y. J. Park, X. Wu, K. M. Kim, M. G. Kang, N.-G. Park, S. H. Chang, Electrochimica Acta. 2004, 50, 2–3, 30, 843.
[8] D. Antiohos, G. Folkes, P. Sherrell, S. Ashraf, G. G. Wallace, P. Aitchison, A. T. Harris, J. Chen and A. I. Minett, J. Mater. Chem. 2011, 21, 15987.
[9] A. M. Österholm, D. E. Shen, A. L. Dyer, and J. R. Reynolds, ACS Appl. Mater. Interfaces. 2013, 5, 24, 13432.
[10] G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J.-L. Marty, T. Noguer, Talanta. 2010, 82, 3, 957.
[11] R. A. Olowu, O. Arotiba, S. N. Mailu, T. T. Waryo, P. Baker and E. Iwuoha, Sensors (Basel). 2010, 10, 11, 9872.
[12] J. Daprà, L. H. Lauridsen, A. Toftgaard Nielsen, N. Rozlosnik, Biosensors and Bioelectronics, 2013, 43, 315.
[13] A. Phongphut, C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranont, S. Prichanont, P. Sritongkham, Sensors and Actuators B: Chemical. 2013, 178, 501.
[14] A. Aleshin, R. Kiebooms, R. Menon, and A. J. Heeger, Synth Met, 1997, 90, 1, 61.
[15] T. El Moustafid, R. V. Gregory, K. R. Brenneman, and P. M. Lessner, Polymer Preprints. 2002, 43, 2, 1320.
[16] G. Zotti, S. Zecchin, G. Schiavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, M. Fahlman, Macromolecules. 2003, 36, 3337.
[17] F. Jonas, G. Heywang and W. Schmidtberg (Bayer AG) DE 38 13 589, 1988.
[18] L. Pettersson, F. Carlsson, O. Inganas, H. J. Arwin, Thin Solid Films. 1998, 313-314, 356.
[19] B. Winther-Jensen, D. W. Breiby and K. West, Synth. Met. 2005, 152, 1-3, 1.
[20] J. Kim, E. Kim, Y. Won, H. Lee, K. Suh, J. Synth. Met. 2003, 139, 485.
[21] B. Winther-Jensen and K. West., Macromolecules. 2004, 37, 4538.
[22] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mat. 2011, 21, 6, 1076.
[23] D. A. Mengistie, M. A. Ibrahem, P.-C. Wang, and C.-W. Chu, ACS Appl. Mater. Interfaces. 2014, 6, 4, 2292.
[24] X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. van der Auweraer, W. R. Salaneck, and M. Berggren, Chem. Mater. 2006, 18, 4354.
[25] H. J. Lee, J. Lee and S. M. Park, J. Phys. Chem. B. 2010, 114, 2660.
[26] B. Winther-Jensen, T. Knecht, C. Ong, J. Vongsvivut, C. Ong, N. Claark, Macromol Mat. and Eng. 2011, 296, 2, 185.
[27] L. Jimison, A. Hama, X. Strakosas, V. Armel, D. Khodagholy, E. Ismailova, G. G. Malliaras, B. Winther-Jensen, M. R Owens, J. Mater. Chem. 2012, 22, 19498.
[28] K. Zuber, M. Fabreto, C. Hall, P. Murohy, Macromol. Rapid Commun. 2008, 29, 1503.
[29] M. Fabretto, M. Müller, K. Zuber, P. Murphy, Macromol. Rapid Commun. 2009, 30, 1846.
[30] N. Massonnet, A. Carella, A. de Geyer, J. Faure-Vincent, J.-P. Simonato, Chem. Sci. 2015, 6, 412.
[31] M. N. Gueye, A. Carella, N. Massonnet, E. Yvenou, S. Brenet, J. Faure-Vincent, S. Pouget, F. Rieutord, H. Okuno, A. Benayad, R. Demadrille, J.-P. Simonato, Chem. Mater. 2016, 28, 3462.
[32] M. V. Fabretto, D. R. Evans, M. Mueller, K. Zuber, P. Hojati-Talemi, R. D. Short, G. G. Wallace, P. J. Murphy, Chem. Mater. 2012, 24, 3998
[33] K. Kiilerich-Pedersen, J. Daprà, S. Cherré, N. Rozlosnik, Biosens Bioelectron. 2013, 49, 374.
[34] G. Rosati, J. Daprà, S. Cherré, N. Rozlosnik, Electroanalysis. 2014, 26, 1400.