WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001869,
	  title     = {The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates},
	  author    = {Ceren Ince and  Berkay Z. Erdem and  Shahram Derogar and  Nabi Yuzer},
	  country	= {},
	  institution	= {},
	  abstract     = {Fibre cement plates, often used in construction,
generally are made using quartz as an inert material, cement as a
binder and cellulose as a fibre. This paper, first of all, investigates the
mechanical properties and durability of fibre cement plates when
quartz is both partly and fully replaced with diatomite. Diatomite
does not only have lower density compared to quartz but also has
high pozzolanic activity. The main objective of this paper is the
investigation of the effects of supplementary cementing materials
(SCMs) on the short and long term mechanical properties and
durability characteristics of fibre cement plates prepared using
diatomite. Supplementary cementing materials such as ground
granulated blast furnace slug (GGBS) and fly ash (FA) are used in
this study. Volume proportions of 10, 20, 30 and 40% of GGBS and
FA are used as partial replacement materials to cement. Short and
long term mechanical properties such as compressive and flexural
strengths as well as sorptivity characteristics and mass were
investigated. Consistency and setting time at each replacement levels
of SCMs were also recorded. The effects of using supplementary
cementing materials on the carbonation and sulphate resistance of
fibre cement plates were then experimented. The results, first of all,
show that the use of diatomite as a full or partial replacement to
quartz resulted in a systematic decrease in total mass of the fibre
cement plates. The reduction of mass was largely due to the lower
density and finer particle size of diatomite compared to quartz. The
use of diatomite did not only reduce the mass of these plates but also
increased the compressive strength significantly as a result of its high
pozzolanic activity. The replacement levels of both GGBS and FA
resulted in a systematic decrease in short term compressive strength
with increasing replacement levels. This was essentially expected as
the total rate of hydration is much lower in GGBS and FA than that
of cement. Long term results however, indicated that the compressive
strength of fibre cement plates prepared using both GGBS and FA
increases with time and hence the compressive strength of plates
prepared using SCMs is either equivalent or more than the
compressive strength of plates prepared using cement alone.
Durability characteristics of fibre cement plates prepared using SCMs
were enhanced significantly. Measurements of sopritivty
characteristics were also indicated that the plates prepared using
SCMs has much lower water absorption capacities compared to
plates prepared cement alone. Much higher resistance to carbonation
and sulphate attach were observed with plates prepared using SCMs.
The results presented in this paper show that the use of SCMs does
not only support the production of more sustainable construction
materials but also enhances the mechanical properties and durability
characteristics of fibre cement plates.},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {9},
	  number    = {8},
	  year      = {2015},
	  pages     = {978 - 984},
	  ee        = {https://publications.waset.org/pdf/10001869},
	  url   	= {https://publications.waset.org/vol/104},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 104, 2015},
	}