Search results for: Mobile robot
1107 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581106 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots
Authors: Baoshan Wei, Shuai Han, Xing Zhang
Abstract:
Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991105 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.
Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901104 Minimizing of Target Localization Error using Multi-robot System and Particle Filters
Authors: Jana Puchyova
Abstract:
In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.Keywords: Multi-robot system, particle filter, position estimation, target localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671103 A Unified Framework for a Robust Conflict-Free Robot Navigation
Authors: S. Veera Ragavan, V. Ganapathy
Abstract:
Many environment specific methods and systems for Robot Navigation exist. However vast strides in the evolution of navigation technologies and system techniques create the need for a general unified framework that is scalable, modular and dynamic. In this paper a Unified Framework for a Robust Conflict-free Robot Navigation System that can be used for either a structured or unstructured and indoor or outdoor environments has been proposed. The fundamental design aspects and implementation issues encountered during the development of the module are discussed. The results of the deployment of three major peripheral modules of the framework namely the GSM based communication module, GIS Module and GPS module are reported in this paper.Keywords: Localization, Sensor Fusion, Mapping, GIS, GPS, and Autonomous Mobile Robot Navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581102 A Development of Home Service Robot using Omni-Wheeled Mobility and Task-Based Manipulation
Authors: Hijun Kim, Jungkeun Sung, Seungwoo Kim
Abstract:
In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 3 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.Keywords: Holonomic Omni-wheeled Mobile Robot, Special-purpose, Manipulation, Home Service Robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24051101 A Review: Comparative Analysis of Arduino Micro Controllers in Robotic Car
Authors: C. Rajan, B. Megala, A. Nandhini, C. Rasi Priya
Abstract:
Robotics brings together several very different engineering areas and skills. There are various types of robot such as humanoid robot, mobile robots, remotely operated vehicles, modern autonomous robots etc. This survey paper advocates the operation of a robotic car (remotely operated vehicle) that is controlled by a mobile phone (communicate on a large scale over a large distance even from different cities). The person makes a call to the mobile phone placed in the car. In the case of a call, if any one of the button is pressed, a tone equivalent to the button pressed is heard at the other end of the call. This tone is known as DTMF (Dual Tone Multiple Frequency). The car recognizes this DTMF tone with the help of the phone stacked in the car. The received tone is processed by the Arduino microcontroller. The microcontroller is programmed to acquire a decision for any given input and outputs its decision to motor drivers in order to drive the motors in the forward direction or backward direction or left or right direction. The mobile phone that makes a call to cell phone stacked in the car act as a remote.
Keywords: Arduino Micro-controller, Arduino UNO, DTMF, Mobile phone, Robotic car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42381100 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491099 Localization for Indoor Service Robot Using Natural Landmark on the Ceiling
Authors: Seung-Hun Kim, Changwoo Park
Abstract:
In this paper, we present a localization of a mobile robot with localization modules which have two ceiling-view cameras in indoor environments. We propose two kinds of localization method. The one is the localization in the local space; we use the line feature and the corner feature between the ceiling and wall. The other is the localization in the large space; we use the natural features such as bulbs, structures on the ceiling. These methods are installed on the embedded module able to mount on the robot. The embedded module has two cameras to be able to localize in both the local space and the large spaces. The experiment is practiced in our indoor test-bed and a government office. The proposed method is proved by the experimental results.
Keywords: Robot, Localization, Indoor, Ceiling vision, Local space, Large space, Complex space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21771098 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11351097 Development of a Portable Welding Robot with EtherCAT Interface
Authors: Juyi Park, Sang-Bum Lee, Jin-Wook Kim, Ji-Yoon Kim, Jung-Min Kim, Hee-Hwan Park, Jae-Won Seo, Gye-Hyung Kang, Soo-Ho Kim
Abstract:
This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.Keywords: Portable welding robot, Shipbuilding, EtherCAT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19631096 A Study on the Mobile Web Generating using Element of User Experience
Authors: Heeae Ko, Jongkeun Kim, Kunjung Sim, Kunho Sim, Yonghwan Lim
Abstract:
As mobile service's subscriber is increasing; mobile contents services are getting more and more variables. So, mobile contents development needs not only contents design but also guideline for just mobile. And when mobile contents are developed, it is important to pass the limit and restriction of the mobile. The restrictions of mobile are small browser and screen size, limited download size and uncomfortable navigation. So each contents of mobile guideline will be presented for user's usability, easy of development and consistency of rule. This paper will be proposed methodology which is each contents of mobile guideline. Mobile web will be developed by mobile guideline which I proposed.Keywords: Guideline, interface, mobile, mobile computing, userexperience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641095 Robot Cell Planning
Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi
Abstract:
A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20451094 Autonomic Management for Mobile Robot Battery Degradation
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.
Keywords: Autonomic, self-adaptive, self-optimizing, degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071093 An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -
Authors: Yingxin He, Kyouichi Tatsuno
Abstract:
In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".Keywords: Robot controller, Software library, Maintenance robot, Robot language, Agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14021092 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.
Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871091 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data
Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri
Abstract:
Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e, meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.
Keywords: Deadline missing, historical data, mobile robots, prediction mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18091090 Estimation of Relative Self-Localization Based On Natural Landmark and an Improved SURF
Authors: Xing Xiong, Byung-Jae Choi
Abstract:
It is important for an autonomous mobile robot to know where it is in any time in an indoor environment. In this paper, we design a relative self-localization algorithm. The algorithm compare the interest point in two images and compute the relative displacement and orientation to determent the posture. Firstly, we use the SURF algorithm to extract the interest points of the ceiling. Second, in order to reduce amount of calculation, a replacement SURF is used to extract orientation and description of the interest points. At last, according to the transformation of the interest points in two images, the relative self-localization of the mobile robot will be estimated greatly.Keywords: Relative Self-Localization Posture, SURF, Natural Landmark, Interest Point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731089 Memetic Algorithm Based Path Planning for a Mobile Robot
Authors: Neda Shahidi, Hadi Esmaeilzadeh, Marziye Abdollahi, Caro Lucas
Abstract:
In this paper, the problem of finding the optimal collision free path for a mobile robot, the path planning problem, is solved using an advanced evolutionary algorithm called memetic algorithm. What is new in this work is a novel representation of solutions for evolutionary algorithms that is efficient, simple and also compatible with memetic algorithm. The new representation makes it possible to solve the problem with a small population and in a few generations. It also makes the genetic operator simple and allows using an efficient local search operator within the evolutionary algorithm. The proposed algorithm is applied to two instances of path planning problem and the results are available.
Keywords: Path planning problem, Memetic Algorithm, Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401088 Vision Based Robot Experiment: Measurement of Path Related Characteristics
Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour
Abstract:
In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.Keywords: Robot, Vision, Experiment, Standard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12551087 A Stable Pose Estimation Method for the Biped Robot using Image Information
Authors: Sangbum Park, Youngjoon Han
Abstract:
This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.
Keywords: Biped robot, Zero moment point, Balance control, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061086 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method
Authors: Abolfazl Mohammadijoo
Abstract:
In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.
Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5081085 A Crisis Communication Network Based on Embodied Conversational Agents System with Mobile Services
Authors: Ong Sing Goh, C. Ardil, Chun Che Fung, Kok Wai Wong, Arnold Depickere
Abstract:
In this paper, we proposed a new framework to incorporate an intelligent agent software robot into a crisis communication portal (CCNet) in order to send alert news to subscribed users via email and other mobile services such as Short Message Service (SMS), Multimedia Messaging Service (MMS) and General Packet Radio Services (GPRS). The content on the mobile services can be delivered either through mobile phone or Personal Digital Assistance (PDA). This research has shown that with our proposed framework, the embodied conversation agents system can handle questions intelligently with our multilayer architecture. At the same time, the extended framework can take care of delivery content through a more humanoid interface on mobile devices.
Keywords: Crisis Communication Network (CCNet), EmbodiedConversational Agents (ECAs), Mobile Services, ArtificialIntelligence Neural-network Identity (AINI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991084 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System
Authors: Vinay Kumar Pilania, Debashish Chakravarty
Abstract:
The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331083 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32641082 Design and Fabrication of a Column-Climber Robot (Koala Robot)
Authors: Maziar Sadeghi, Amir Moradi
Abstract:
This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.Keywords: Robot, Column-climber, Gripping mechanism, Koala.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21751081 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures
Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley
Abstract:
This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.Keywords: Climbing robot, dipole antenna, Ground Penetrating Radar (GPR), mobile robots, robotic GPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14511080 Tracked Robot with Blade Arms to Enhance Crawling Capability
Authors: Jhu-Wei Ji, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Kai-Yi Cho
Abstract:
This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains that are full of broken and complicated slopes, broken walls, rubbles, and ditches. Thereupon, a robot, which is instructed to pass through such disaster areas, needs to have a good off-road capability for such complicated terrains. The robot with crawling-assisting blade arms would overcome the obstacles along the terrains, and possibly become to be a rescue robot. A prototype has been developed and built; experiments were carried out to validate the enhanced crawling capability of the robot.
Keywords: Tracked robot, rescue robot, blade arm, crawling ability, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061079 An Approach for Integration of Industrial Robot with Vision System and Simulation Software
Authors: Ahmed Sh. Khusheef, Ganesh Kothapalli, Majid Tolouei-Rad
Abstract:
Utilization of various sensors has made it possible to extend capabilities of industrial robots. Among these are vision sensors that are used for providing visual information to assist robot controllers. This paper presents a method of integrating a vision system and a simulation program with an industrial robot. The vision system is employed to detect a target object and compute its location in the robot environment. Then, the target object-s information is sent to the robot controller via parallel communication port. The robot controller uses the extracted object information and the simulation program to control the robot arm for approaching, grasping and relocating the object. This paper presents technical details of system components and describes the methodology used for this integration. It also provides a case study to prove the validity of the methodology developed.Keywords: industrial robot, integration, simulation, vision system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241078 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys
Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw
Abstract:
In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.Keywords: Biomorphic Robot, Shape Memory Alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655